Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization

合作研究:SHF:中:近硬件程序修复和优化

基本信息

  • 批准号:
    2211751
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The project addresses today's reality that special-purpose computing hardware and hardware accelerators have become de facto necessities for supporting the large-scale computations used for data analysis, AI and machine learning, scientific modeling, and social-media platforms. At the same time, education and existing tools still require computer programmers to have deep knowledge of both low-level hardware considerations and higher-level application logic. Higher levels of program abstraction are more tractable for humans and automated program improvement methods because they separate algorithm logic from implementation details, while lower 'near-hardware' levels of abstraction are difficult for humans to understand and optimize because of the many crucial architectural and hardware details that often interact with application-level logic in non-trivial ways. The project addresses this gap by developing automated methods for near-hardware run-time optimization of programs, bug repair, and creation of new programs. It includes an evaluation featuring interactive human evaluations, which studies human interactions with the project's automated tools along several dimensions.The project aims to improve the automation of software engineering tasks for near-hardware domains. This requires addressing fundamental questions such as: What representations span multiple levels of abstraction? How can one analyze and select optimizations respecting both hardware and software constraints for real-world applications? How can a tool communicate its results to users who may lack expertise in either domain-specific architecture or hardware-specific details? The project adapts higher-level automated program improvement methods to three specific tasks: automatically finding optimizations that reduce general-purpose GPU code runtimes; repairing defects in circuit designs; and synthesizing debuggable code for hardware accelerators. Each task requires representations and algorithms that cross abstraction levels, and each task features an evaluation plan that places explicit emphasis on the human element, measuring the semantic gap between automatically lifted optimizations and different levels of human expertise, measuring ease of use of interactive synthesis tools across human expertise levels, and using eye tracking to investigate which elements of a multi-edit patch are most difficult understand. The project will enable many of the benefits of source-level automated program improvement to be available to near-hardware domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了当今的现实,即专用计算硬件和硬件加速器已成为支持数据分析、人工智能和机器学习、科学建模和社交媒体平台的大规模计算的事实上的必需品。与此同时,教育和现有工具仍然要求计算机程序员对低级硬件考虑因素和高级应用逻辑有深入的了解。 较高级别的程序抽象对于人类和自动化程序改进方法来说更容易处理,因为它们将算法逻辑与实现细节分开,而较低的“近硬件”抽象级别则难以为人类理解和优化,因为许多关键的架构和硬件细节通常以非平凡的方式与应用程序级逻辑交互。该项目通过开发自动化方法来解决这一差距,以实现程序的近硬件运行时优化、错误修复和新程序的创建。 它包括一个以交互式人类评估为特色的评估,该评估从多个维度研究人类与项目自动化工具的交互。该项目旨在提高近硬件领域软件工程任务的自动化。这需要解决一些基本问题,例如:什么表示跨越多个抽象级别?如何根据实际应用的硬件和软件约束来分析和选择优化?工具如何向缺乏特定领域架构或特定硬件细节专业知识的用户传达其结果?该项目将更高级别的自动化程序改进方法应用于三个特定任务:自动查找可减少通用 GPU 代码运行时间的优化;修复电路设计中的缺陷;并为硬件加速器合成可调试代码。每项任务都需要跨越抽象级别的表示和算法,并且每项任务都具有一个评估计划,该计划明确强调人为因素,测量自动提升的优化与不同人类专业知识水平之间的语义差距,测量跨人类专业知识水平的交互式合成工具的易用性,并使用眼动追踪来调查多重编辑补丁中的哪些元素最难理解。 该项目将使源级自动化程序改进的许多好处能够应用于近硬件领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
START: A Framework for Trusted and Resilient Autonomous Vehicles (Practical Experience Report)
  • DOI:
    10.1109/issre55969.2022.00018
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Leach;C. Timperley;K. Angstadt;A. Nguyen-Tuong;Jason Hiser;Aaron M. Paulos;P. Pal;P. Hurley;Carl Thomas;J. Davidson;S. Forrest;Claire Le Goues;Westley Weimer
  • 通讯作者:
    Kevin Leach;C. Timperley;K. Angstadt;A. Nguyen-Tuong;Jason Hiser;Aaron M. Paulos;P. Pal;P. Hurley;Carl Thomas;J. Davidson;S. Forrest;Claire Le Goues;Westley Weimer
Synthesizing Legacy String Code for FPGAs Using Bounded Automata Learning
使用有界自动机学习合成 FPGA 的遗留字符串代码
  • DOI:
    10.1109/mm.2022.3178037
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Angstadt, Kevin;Tracy, Tommy;Skadron, Kevin;Jeannin, Jean-Baptiste;Weimer, Westley
  • 通讯作者:
    Weimer, Westley
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Angstadt其他文献

Kevin Angstadt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了