Collaborative Research: RI:Medium:MoDL:Mathematical and Conceptual Understanding of Large Language Models

合作研究:RI:Medium:MoDL:大型语言模型的数学和概念理解

基本信息

  • 批准号:
    2211780
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Large language models (LLMs) have achieved unprecedented success in natural language processing (NLP). Since language models are being seen as a cornerstone of artificial intelligence in the near future, there is a need to be able to understand them, and to convey that understanding to regulators as well as the general public. These models are based on deep neural networks that are trained from vast quantities of text and have been demonstrated to be highly useful in performing tasks such as question answering, text classification, machine translation and summarization. Despite the huge empirical success, there is little understanding about their inner workings. This project seeks to bridge the gap by developing conceptual and mathematical understanding about training and using LLMs. The project will advance such understanding. The project will also seek to develop and disseminate instructional materials and draw on ideas from the project to impact ongoing programs at their institution to help increase participation in computing by individuals from underrepresented groups. The project has three components. (1) We will first build simplified generative models that capture the intrinsic structures of text, and analyze language models that are trained on texts from such generative models. (2) We then analyze why the learned language models can encode useful information that helps a wide range of downstream tasks. (3) Finally, we analyze and design new adaptation methods for downstream tasks with quantitative sample and computational efficiency guarantees. Education and outreach plans are integrated into this project: the investigators will develop a new introductory course in machine learning and disseminate instructional materials, mentor graduate and undergraduate students from underrepresented groups (through Princeton Freshman Scholars Institute, Stanford Summer Teacher Research Program, REU’s) and organize research workshops to promote conversations between the theoretical machine learning and NLP community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型语言模型(llm)在自然语言处理(NLP)领域取得了前所未有的成功。由于语言模型在不久的将来被视为人工智能的基石,因此有必要能够理解它们,并将这种理解传达给监管机构和公众。这些模型基于深度神经网络,这些神经网络是从大量文本中训练出来的,并已被证明在执行诸如问答、文本分类、机器翻译和摘要等任务方面非常有用。尽管在经验上取得了巨大的成功,但人们对它们的内部运作却知之甚少。该项目旨在通过发展对培训和使用法学硕士的概念和数学理解来弥合差距。该项目将促进这种理解。该项目还将寻求开发和传播教学材料,并从项目中吸取思想,以影响他们所在机构正在进行的项目,以帮助来自代表性不足群体的个人增加对计算机的参与。该项目有三个组成部分。(1)我们将首先构建捕获文本内在结构的简化生成模型,并分析基于这些生成模型的文本训练的语言模型。(2)然后,我们分析了为什么学习的语言模型可以编码有用的信息,这有助于广泛的下游任务。(3)最后,分析设计了具有定量样本和计算效率保证的下游任务自适应方法。教育和推广计划被整合到这个项目中:研究人员将开发一门新的机器学习入门课程,传播教学材料,指导来自代表性不足群体的研究生和本科生(通过普林斯顿大学新生学者研究所,斯坦福大学暑期教师研究计划,REU),组织研究研讨会,促进理论机器学习和NLP社区之间的对话。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengyu Ma其他文献

On the Performance of Thompson Sampling on Logistic Bandits
汤普森采样对Logistic Bandits的性能研究
Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms
使用平方和算法分解超完备三阶张量
  • DOI:
    10.4230/lipics.approx-random.2015.829
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Ge;Tengyu Ma
  • 通讯作者:
    Tengyu Ma
Mission-Oriented Networks Robustness Based on Cascade Model
基于级联模型的面向任务的网络鲁棒性
Material Parameters in the GTN Model for Ductile Fracture Simulation of G20Mn5QT Cast Steels
G20Mn5QT 铸钢延性断裂模拟的 GTN 模型中的材料参数
Learning Over-Parametrized Two-Layer Neural Networks beyond NTK
学习 NTK 之外的超参数化两层神经网络

Tengyu Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengyu Ma', 18)}}的其他基金

Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
  • 批准号:
    2212263
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Toward a Comprehensive Generalization Theory for Deep Learning
职业:走向深度学习的综合泛化理论
  • 批准号:
    2045685
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了