CAREER: Toward a Comprehensive Generalization Theory for Deep Learning

职业:走向深度学习的综合泛化理论

基本信息

  • 批准号:
    2045685
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

The advancement of deep learning, the technique of training artificial neural networks to make predictions, has led to recent breakthroughs in many areas of artificial intelligence, such as computer vision, natural language understanding, and robotics. A major challenge in deep learning is ensuring accurate predictions on unseen scenarios. This project plans to tackle this challenge via theoretical analysis and its empirical evaluation. The project aims to contribute to the fundamental understanding of deep learning and inform the practical advancement of deep learning, improving its reliability, efficiency, and risk management in data-hungry and risk-sensitive applications. An education plan is integrated into this project --- the investigator will develop new courses, mentor students, organize workshops, and work with high-school teachers on developing high-school AI courses.The project aims to build a comprehensive generalization theory for deep neural networks, which covers the technical question of implicit regularization effect and the broad concepts of out-of-domain generalization and the estimation of generalization errors. This project has three major components. The first thrust is to characterize the optimizers’ implicit regularization effect for complex models. Leveraging the theoretical insights, the investigator will make implicit regularization more explicit, stronger, and customizable to datasets to improve generalization. The second thrust is to theoretically study the out-of-domain generalization in settings with an increasing level of differences between the training and test environments by a growing level of exploitation of unlabeled data and their properties. Finally, the PI will study estimating the generalization errors, which is crucial for quantifying the risk before deploying machine learning models in risk-sensitive applications such as healthcare.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习(训练人工神经网络进行预测的技术)的进步导致了人工智能许多领域的最新突破,例如计算机视觉、自然语言理解和机器人技术。深度学习的一个主要挑战是确保对未见过的场景进行准确预测。该项目计划通过理论分析和实证评估来应对这一挑战。该项目旨在促进对深度学习的基本理解,并为深度学习的实际进步提供信息,提高其在数据密集型和风险敏感型应用中的可靠性、效率和风险管理。 该项目融入了教育计划——研究者将开发新课程、指导学生、组织研讨会,并与高中教师合作开发高中人工智能课程。该项目旨在建立深度神经网络的综合泛化理论,涵盖隐式正则化效应的技术问题以及域外泛化和泛化误差估计的广泛概念。该项目由三个主要部分组成。第一个重点是表征优化器对复杂模型的隐式正则化效果。利用理论见解,研究人员将使隐式正则化更加明确、更强,并且可针对数据集进行定制,以提高泛化能力。第二个重点是从理论上研究由于对未标记数据及其属性的利用程度不断提高而导致训练和测试环境之间的差异越来越大的情况下的域外泛化。最后,PI 将研究估计泛化误差,这对于在医疗保健等风险敏感应用中部署机器学习模型之前量化风险至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengyu Ma其他文献

On the Performance of Thompson Sampling on Logistic Bandits
汤普森采样对Logistic Bandits的性能研究
Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms
使用平方和算法分解超完备三阶张量
  • DOI:
    10.4230/lipics.approx-random.2015.829
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Ge;Tengyu Ma
  • 通讯作者:
    Tengyu Ma
Material Parameters in the GTN Model for Ductile Fracture Simulation of G20Mn5QT Cast Steels
G20Mn5QT 铸钢延性断裂模拟的 GTN 模型中的材料参数
Learning Over-Parametrized Two-Layer Neural Networks beyond NTK
学习 NTK 之外的超参数化两层神经网络
Mission-Oriented Networks Robustness Based on Cascade Model
基于级联模型的面向任务的网络鲁棒性

Tengyu Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengyu Ma', 18)}}的其他基金

Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
  • 批准号:
    2212263
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: RI:Medium:MoDL:Mathematical and Conceptual Understanding of Large Language Models
合作研究:RI:Medium:MoDL:大型语言模型的数学和概念理解
  • 批准号:
    2211780
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

Comprehensive Research on Japanese Philosophy of Technology: a new step toward its globalization
日本技术哲学综合研究:迈向全球化的新一步
  • 批准号:
    23H00557
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comprehensive research toward reduction of non-cancer mortality in elderly patients receiving radiotherapy for cancer
降低接受癌症放射治疗的老年患者非癌症死亡率的综合研究
  • 批准号:
    22K07637
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TOward a comPrehensive supportive Care intervention for Older men with metastatic Prostate cancer: a pilot RCT and process evaluation (TOPCOP3)
对患有转移性前列腺癌的老年男性进行全面的支持性护理干预:试点随机对照试验和过程评估(TOPCOP3)
  • 批准号:
    465323
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Operating Grants
A comprehensive study of the three-dimensional left ventricular flow subject to aortic valve regurgitation: Toward a predictive model for earlier disease detection and treatment
对主动脉瓣关闭不全的三维左心室血流的综合研究:建立早期疾病检测和治疗的预测模型
  • 批准号:
    546163-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Postdoctoral Fellowships
Toward development of a comprehensive, in-home, active seating system to lessen sedentariness and improve health and wellness in older adults.
开发全面的家用主动座椅系统,以减少久坐并改善老年人的健康状况。
  • 批准号:
    10322045
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
Multi-isotopic analyses of the samples returned from Ryugu: Toward the comprehensive understanding of the origin and formation history of C-type asteroids
龙宫带回样品的多同位素分析:全面了解C型小行星的起源和形成历史
  • 批准号:
    21KK0058
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Strengths perspective in social work practice toward establishment of comprehensive support system
加强社会工作实践视角,建立综合支持体系
  • 批准号:
    21H00793
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reverse Trans-Omics Analysis for Comprehensive Bottom-up Understanding Toward Conquering Cancer Systems
反向跨组学分析以全面自下而上地了解征服癌症系统
  • 批准号:
    20H04282
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
FY20 PHASE I SBIR CONTRACT - TOPIC 401 - PHASE I SBIR CONTRACT QUANTITATIVE BIOMIMETIC MRI BREAST TISSUE AND TUMOR PHANTOM: TOWARD A COMPREHENSIVE PHA
2020 财年第一期 SBIR 合同 - 主题 401 - 第一期 SBIR 合同定量仿生 MRI 乳腺组织和肿瘤模型:迈向全面的 PHA
  • 批准号:
    10274011
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
Comprehensive Understanding on Continuous Column Effects and its Application toward Architectural Design
连续柱效应的全面认识及其在建筑设计中的应用
  • 批准号:
    20K04783
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了