SHF: Medium: Automated Software Engineering Techniques for Improving the Accessibility of Software
SHF:中:用于提高软件可访问性的自动化软件工程技术
基本信息
- 批准号:2211790
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ability to use software with ease is important for everyone, especially for approximately 15% of the world population with disabilities. Even the simplest operations, taken for granted by regular users, can be daunting tasks for disabled users. Unfortunately, in the current state of affairs, software inaccessibility is widespread. This can be attributed, at least partly, to the deficiencies in existing techniques and tools available to software engineers. Automated solutions for validating the accessibility of software are woefully insufficient. They either fail to detect many real accessibility issues or report too many superficial issues that are irrelevant in practice. Automated repair techniques, shown to be quite effective for improving various quality attributes of software (e.g., reliability, security), are scarce for accessibility. Existing interaction modalities are too rigid and cumbersome, seriously hindering the disabled users' use and enjoyment of the profound advances in software technology. This project lays the groundwork for innovative technologies that will enable end-users with vision and motor impairments to interact more effectively with software. Combining empirical data-driven research and tool building activities, the project will advance the state-of-the-art in several ways. First, the team of researchers will devise a use-case and assistive-service-driven accessibility issue detection technique capable of automatically identifying accessibility issues that are not detectable using the existing state-of-the-art techniques. Second, the researchers will develop an automated program repair solution that employs a combination of novel deep-learning and search-based strategies for fixing a variety of accessibility issues. Furthermore, the team will construct the means for automatically identifying use case macros for navigation optimization, allowing a disabled user to rapidly execute frequently accessed use cases through intuitive commands. Finally, utilizing a mixed-methods approach of user studies and interviews with both disabled users and software engineers, researchers will evaluate the efficacy of techniques developed in this project. Ultimately, the project will result in a suite of tools, which will be made available publicly, for helping developers with improving the accessibility of software systems that they construct.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
轻松使用软件的能力对每个人都很重要,尤其是对世界上约15%的残疾人来说。即使是普通用户认为理所当然的最简单的操作,对于残疾用户来说也可能是令人生畏的任务。不幸的是,在目前的情况下,软件不可访问性是普遍存在的。这可以归因于,至少部分地,在现有的技术和软件工程师可用的工具的缺陷。用于验证软件可访问性的自动化解决方案远远不够。他们要么没有发现许多真实的可访问性问题,要么报告了太多与实践无关的表面问题。自动修复技术,被证明是非常有效的提高各种质量属性的软件(例如,可靠性、安全性)对于可访问性来说是稀缺的。现有的交互方式过于僵化和繁琐,严重阻碍了残疾用户使用和享受软件技术的深刻进步。该项目为创新技术奠定了基础,使视力和运动障碍的最终用户能够更有效地与软件进行交互。结合经验数据驱动的研究和工具建设活动,该项目将在几个方面推进国家的最先进的。首先,研究团队将设计一种用例和辅助服务驱动的可访问性问题检测技术,能够自动识别使用现有最先进技术无法检测到的可访问性问题。其次,研究人员将开发一种自动化程序修复解决方案,该解决方案将新型深度学习和基于搜索的策略相结合,以解决各种可访问性问题。此外,该团队将构建自动识别用于导航优化的用例宏的方法,允许残疾用户通过直观的命令快速执行频繁访问的用例。最后,利用混合方法的用户研究和采访残疾用户和软件工程师的方法,研究人员将评估在这个项目中开发的技术的有效性。最终,该项目将产生一套工具,这些工具将公开提供,以帮助开发人员提高他们构建的软件系统的可访问性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements in Mobile Apps
太多的可访问性是有害的!
- DOI:10.1145/3551349.3560424
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mehralian, Forough;Salehnamadi, Navid;Huq, Syed Fatiul;Malek, Sam
- 通讯作者:Malek, Sam
Assistive-Technology Aided Manual Accessibility Testing in Mobile Apps, Powered by Record-and-Replay
由记录和重放提供支持的移动应用程序中的辅助技术辅助手动辅助功能测试
- DOI:10.1145/3544548.3580679
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Salehnamadi, Navid;He, Ziyao;Malek, Sam
- 通讯作者:Malek, Sam
AccessiText: automated detection of text accessibility issues in Android apps
AccessiText:自动检测 Android 应用程序中的文本辅助功能问题
- DOI:10.1145/3540250.3549118
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alshayban, Abdulaziz;Malek, Sam
- 通讯作者:Malek, Sam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Malek其他文献
A systematic co-engineering of safety and security analysis in requirements engineering process
需求工程过程中安全与保障分析的系统协同工程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sejin Jung;Junbeom Yoo;Sam Malek - 通讯作者:
Sam Malek
Determination and Enforcement of Least-Privilege Architecture in Android
Android 中最小权限架构的确定和执行
- DOI:
10.1109/icsa.2017.18 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mahmoud Hammad;Hamid Bagheri;Sam Malek - 通讯作者:
Sam Malek
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap (Draft Version of May 20, 2011)
自适应系统的软件工程:第二个研究路线图(2011 年 5 月 20 日草案)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
R. D. Lemos;Holger Giese;H. Müller;Mary Shaw;J. Andersson;L. Baresi;Basil Becker;Nelly Bencomo;Yuriy Brun;B. Cukic;S. Dustdar;Gregor Engels;K. Geihs;Karl M. Goeschka;V. Grassi;P. Inverardi;G. Karsai;J. Kramer;Marin Litoiu;J. Magee;Sam Malek;Serge Mankovskii;R. Mirandola;J. Mylopoulos;Oscar Nierstrasz;M. Pezzè;C. Prehofer;Wilhelm Schäfer;Richard D. Schlichting;Dennis B. Smith;J. Sousa;Gabriel Tamura;L. Tahvildari;Thomas Vogel;Danny Weyns;Kenny Wong;Jochen Wuttke - 通讯作者:
Jochen Wuttke
Bringing architecture-based adaption to the mainstream
- DOI:
10.1016/j.infsof.2024.107550 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Negar Ghorbani;Joshua Garcia;Sam Malek - 通讯作者:
Sam Malek
Sam Malek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Malek', 18)}}的其他基金
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2106306 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
- 批准号:
1823262 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Small: Efficient Formal Analysis of Evolving Software Systems
SHF:小型:不断发展的软件系统的高效形式分析
- 批准号:
1618132 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CI-P: Collaborative Research: Planning and Prototyping a Community-Wide Software Architecture Instrument
CI-P:协作研究:规划和原型设计社区范围的软件架构工具
- 批准号:
1629771 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: A Mining-Based Approach for Consistent and Timely Adaptation of Component-Based Software
职业生涯:基于挖掘的方法,用于一致且及时地调整基于组件的软件
- 批准号:
1550206 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CAREER: A Mining-Based Approach for Consistent and Timely Adaptation of Component-Based Software
职业生涯:基于挖掘的方法,用于一致且及时地调整基于组件的软件
- 批准号:
1252644 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
EAGER: CCF: SHF: Mining the Execution History of a Software System to Infer the Safe Time for its Adaptation
EAGER:CCF:SHF:挖掘软件系统的执行历史以推断其适应的安全时间
- 批准号:
1217503 - 财政年份:2012
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
- 批准号:
2212346 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
- 批准号:
2212345 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2106871 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Automated Word Level Synthesis for Hardware Code Generation and Verified Abstraction
合作研究:SHF:Medium:用于硬件代码生成和验证抽象的自动字级合成
- 批准号:
2106949 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2107125 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Automated Word Level Synthesis for Hardware Code Generation and Verified Abstraction
合作研究:SHF:Medium:用于硬件代码生成和验证抽象的自动字级合成
- 批准号:
2107138 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2106306 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
2033851 - 财政年份:2020
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
1901284 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Bridging Automated Formal Reasoning and Continuous Optimization for Provably Safe Deep Learning
SHF:中:协作研究:连接自动形式推理和持续优化以实现可证明安全的深度学习
- 批准号:
1901376 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant