ECLIPSE: Mechanistic understanding and control of nitrogen activation in an atmospheric-pressure plasma-liquid process
ECLIPSE:大气压等离子体液体过程中氮活化的机理理解和控制
基本信息
- 批准号:2212110
- 负责人:
- 金额:$ 45.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To reduce our reliance on fossil fuels, sustainable approaches are needed for activating and chemically transforming readily available feedstocks such as nitrogen from the air and water. Plasmas allow chemical reactions to be performed at atmospheric pressure and near room temperature without any catalyst using renewable electricity. Plasmas in contact with liquids have recently emerged as a new approach to promoting electrochemical reactions. However, chemical reactions taking place at a plasma-liquid interface are extremely complex and methods of probing the chemistry and gaining mechanistic insights are needed. This research program will develop cutting edge spectroscopic methods to study chemical reactions and species composition at the plasma-liquid interface under operating conditions. While the methods are general, the research team will focus on the reaction of nitrogen and water to produce ammonia, the precursor to all nitrogen-based agricultural fertilizers. Ammonia is currently industrially produced by a century-old process which has a large carbon footprint and requires large, centralized processing plants. This project has the potential to advance national health, prosperity, and welfare, by developing a sustainable and geographically distributed process for ammonia synthesis. Students will receive experiential learning through visits to local farms, which will provide them with the socioeconomic context to motivate their research. This project will develop in-situ spectroscopic techniques to characterize the interfacial chemistry between an atmospheric-pressure plasma and liquid water. Gas-phase activation of dinitrogen will be characterized by optical emission spectroscopy and laser diagnostics. A major focus of the project will be to implement in-situ surface-enhanced Raman scattering spectroscopy to detect intermediates formed near the plasma-liquid interface by dissociation of gas-phase species and subsequent reaction in the liquid phase. The fundamental knowledge of plasma-induced chemical reactions generated by the gas and liquid phase measurements will be combined with two engineering strategies to improve product yields and energy efficiency: pulsed operation of the plasma to maintain low gas-phase temperatures and the introduction of water droplets or water vapor to increase the size of the plasma/water interfacial area. The outcomes of the proposed work will be a deeper understanding of reaction pathways induced by a plasma at the surface of a liquid, elucidation of unique aspects relative to other alternative methods of dinitrogen activation, and a path forward for optimization of plasma–liquid processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了减少我们对化石燃料的依赖,需要可持续的方法来活化和化学转化容易获得的原料,例如来自空气和水的氮气。等离子体允许化学反应在大气压和接近室温下进行,而无需任何催化剂,使用可再生电力。与液体接触的等离子体最近已经成为促进电化学反应的新方法。然而,在等离子体-液体界面处发生的化学反应是极其复杂的,并且需要探测化学和获得机理见解的方法。该研究计划将开发尖端的光谱方法,以研究操作条件下等离子体-液体界面的化学反应和物种组成。虽然这些方法是通用的,但研究小组将专注于氮和水反应产生氨,氨是所有氮基农业肥料的前体。目前,氨的工业生产是通过一个有百年历史的工艺进行的,该工艺具有很大的碳足迹,需要大型的集中式加工厂。该项目有可能通过开发可持续和地理分布的氨合成工艺来促进国民健康,繁荣和福利。学生将通过参观当地农场获得体验式学习,这将为他们提供社会经济背景,以激励他们的研究。该项目将开发现场光谱技术,以表征大气压等离子体和液态水之间的界面化学。气相活化的二氮将其特征在于光学发射光谱和激光诊断。该项目的一个主要重点将是实施现场表面增强拉曼散射光谱法,以检测在等离子体-液体界面附近通过气相物质的解离和随后在液相中的反应形成的中间体。由气相和液相测量产生的等离子体诱导化学反应的基础知识将与两种工程策略相结合,以提高产品产量和能源效率:等离子体的脉冲操作,以保持低气相温度,并引入水滴或水蒸气,以增加等离子体/水界面面积的大小。拟议工作的成果将是对液体表面等离子体诱导的反应途径的更深入理解,阐明相对于其他替代方法的双氮活化的独特方面,和一条优化等离子体的前进道路-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohan Sankaran其他文献
Critical influence of chemical pretreatments on the deposition and effectiveness of Zr-based conversion coating on AA2024-T3 aluminum alloy
化学预处理对AA2024 - T3铝合金上锆基转化涂层的沉积及有效性的关键影响
- DOI:
10.1016/j.apsusc.2025.163018 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:6.900
- 作者:
Maryam Eslami;Vivek Pachchigar;Mohan Sankaran;Daniel V. Krogstad - 通讯作者:
Daniel V. Krogstad
Mohan Sankaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohan Sankaran', 18)}}的其他基金
Synthesis of Doped, Plasmonic Nanodiamonds from Vapor Precursors by Plasma-based Strategies
通过基于等离子体的策略从蒸气前体合成掺杂的等离子体纳米金刚石
- 批准号:
2103504 - 财政年份:2020
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
Synthesis of Doped, Plasmonic Nanodiamonds from Vapor Precursors by Plasma-based Strategies
通过基于等离子体的策略从蒸气前体合成掺杂的等离子体纳米金刚石
- 批准号:
1708742 - 财政年份:2017
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
Understanding plasma nucleation for a priori control of synthesis of carbon allotropes at the nanoscale
了解等离子体成核以先验控制纳米级碳同素异形体的合成
- 批准号:
1335990 - 财政年份:2013
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
Triboelectric charging of granular materials
颗粒材料的摩擦起电
- 批准号:
1235908 - 财政年份:2012
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
Triboelectric charging in granular systems
颗粒系统中的摩擦起电
- 批准号:
0852772 - 财政年份:2009
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CAREER: Continuous-flow microplasma synthesis of Group IV semiconductor nanoparticles
职业:IV族半导体纳米粒子的连续流微等离子体合成
- 批准号:
0746821 - 财政年份:2008
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
SGER: Gas phase nucleation of diamond: synthesis of nano-diamond powders
SGER:金刚石的气相成核:纳米金刚石粉末的合成
- 批准号:
0649655 - 财政年份:2006
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
Extreme Climatic Events in the Oceans: Towards a mechanistic understanding of ecosystem impacts and resilience
海洋极端气候事件:对生态系统影响和复原力的机械理解
- 批准号:
MR/X023214/1 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Fellowship
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325463 - 财政年份:2024
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
- 批准号:
2247519 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Continuing Grant
ERI: Mechanistic understanding of neural stem cell paracrine activity and extracellular vesicle secretion directed by wireless electrical stimulation
ERI:无线电刺激引导的神经干细胞旁分泌活性和细胞外囊泡分泌的机制理解
- 批准号:
2301908 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
Imaging Life with Light and Sound: State-of-the-art Photoacoustic Imaging For Mechanistic Understanding Of Human Disease
用光和声音成像生命:最先进的光声成像用于理解人类疾病的机制
- 批准号:
MR/X012549/1 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Research Grant
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
- 批准号:
2323065 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
- 批准号:
2238908 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
- 批准号:
2224309 - 财政年份:2023
- 资助金额:
$ 45.71万 - 项目类别:
Standard Grant