Renewal: Overcoming Energy Loss in Organic Bulk Heterojunctions

更新:克服有机体异质结的能量损失

基本信息

项目摘要

Non-technical Description. Solar technologies are increasingly providing energy across the US at costs well below even that of fossil fuels. In short, solar energy is delivering on its promise as a source of low cost, clean and renewable energy. However, solar solutions have largely been based on silicon, which is far from an optimal solution. New solutions must have the objective of making solar power ubiquitous, helping to fulfill our ever-expanding energy needs. These include solar power generating windows and building-integrated photovoltaics as well as devices that operate at very low light levels to scavenge waste illumination power. This is an urgent and fundamental technological challenge. Recently, there have been dramatic increases in the efficiency of potentially low-cost organic solar cells to over 19%, approaching that of silicon cells. This project is directed at determining the ultimate power conversion efficiency of organic solar cells. The investigators will study new organic materials with state-of-the-art optical spectroscopy to understand the power generating mechanisms that limit the efficiency of organic solar cells. The principles derived from these studies can provide molecular design rules and guide the improvement of organic solar cells towards their theoretical limit of ~25% efficiency. The project supports training of a diverse workforce through the education of graduate and undergraduate students in materials design, synthesis, and characterization, coupled with device engineering and scientific communication. The PIs will recruit and retain a diverse next generation of students in STEM fields through diversity, equity and inclusion efforts at the University of Michigan, including outreach to underrepresented groups and hosting a Conference for Undergraduate Women in Physics.Technical Description. The primary goal of this project is to understand and improve organic photovoltaic (OPV) devices through improved materials and device design strategies based on quantum mechanical models. Dramatically reduced energy losses in the charge photogeneration process may ultimately provide a pathway towards ultralow cost solar power in situations where established, mature solar technologies are less effective. Beyond solar energy harvesting, these systems open new avenues for engineering materials for charge and energy transport at the atomistic level, and for their exploitation in applications as light emission, energy and charge transfer over exceptional distances, and may even result in extending electronic technology well beyond its current limits. This project combines the investigators’ extensive expertise in OPV materials, design and characterization with state-of-the-art and emerging multidimensional spectroscopies to understand the energy loss mechanisms that currently limit single junction organic solar cell device efficiencies. The principles derived from these fundamental studies provide molecular design rules to guide the improvement of cell efficiencies towards their thermodynamic limit of ~25%. The work significantly expands the spectroscopic toolbox for probing OPVs, providing transformative opportunities for understanding the mechanisms of charge generation and concomitant energy losses. The research has the following primary goals: (i) Gain a fundamental understanding of the mechanisms governing charge generation and energy loss at organic heterojunctions (HJs) to increase the solar-to-electrical power conversion efficiency to near the thermodynamic limit; (ii) Map the complete HJ charge photogeneration process using multidimensional spectroscopy to probe the mechanisms of charge generation and the origins of energy loss; (iii) Exploit ultrastrong coupling in unique light harvesting architectures to realize exciton-polariton transfer with near-zero energy loss.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述。太阳能技术越来越多地在美国各地提供能源,其成本甚至远低于化石燃料。简而言之,太阳能正在兑现其作为低成本、清洁和可再生能源的承诺。然而,太阳能解决方案很大程度上基于硅,这远非最佳解决方案。新解决方案的目标必须是使太阳能无处不在,帮助满足我们不断扩大的能源需求。其中包括太阳能发电窗户和建筑一体化光伏发电,以及在非常低的光照水平下运行以清除浪费的照明电力的设备。这是一项紧迫而根本的技术挑战。最近,潜在的低成本有机太阳能电池的效率已大幅提高至 19% 以上,接近硅电池的效率。该项目旨在确定有机太阳能电池的最终功率转换效率。研究人员将利用最先进的光谱研究新的有机材料,以了解限制有机太阳能电池效率的发电机制。从这些研究中得出的原理可以提供分子设计规则,并指导有机太阳能电池的改进,使其达到约 25% 效率的理论极限。该项目通过对研究生和本科生进行材料设计、合成和表征以及设备工程和科学传播方面的教育,支持多元化劳动力的培训。 PI 将通过密歇根大学的多样性、公平性和包容性努力,招募和留住 STEM 领域的多元化下一代学生,包括向代表性不足的群体进行外展活动,以及主办物理技术描述领域本科女性会议。该项目的主要目标是通过基于量子力学模型改进材料和器件设计策略来了解和改进有机光伏(OPV)器件。在成熟、成熟的太阳能技术效率较低的情况下,电荷光生过程中能量损失的大幅减少可能最终为超低成本太阳能提供一条途径。除了太阳能收集之外,这些系统还为原子级电荷和能量传输的工程材料以及在超远距离光发射、能量和电荷传输等应用中的开发开辟了新途径,甚至可能导致电子技术远远超出其当前限制。该项目将研究人员在 OPV 材料、设计和表征方面的广泛专业知识与最先进的新兴多维光谱相结合,以了解目前限制单结有机太阳能电池器件效率的能量损失机制。从这些基础研究中得出的原理提供了分子设计规则,以指导电池效率提高至约 25% 的热力学极限。这项工作显着扩展了用于探测 OPV 的光谱工具箱,为理解电荷产生和伴随能量损失的机制提供了变革性的机会。该研究有以下主要目标:(i)对有机异质结(HJ)的电荷产生和能量损失的控制机制有基本的了解,以将太阳能到电能的转换效率提高到接近热力学极限; (ii) 使用多维光谱绘制完整的异质结电荷光生过程,以探究电荷生成机制和能量损失的根源; (iii) 利用独特的光捕获架构中的超强耦合,实现近零能量损失的激子-极化子转移。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Forrest其他文献

Energy efficiency with organic electronics: Ching W. Tang revisits his days at Kodak
  • DOI:
    10.1557/mrs.2012.125
  • 发表时间:
    2012-06-08
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Stephen Forrest;Nicole Casal Moore
  • 通讯作者:
    Nicole Casal Moore
Craford, Forrest Named 1999 MRS Medalists
  • DOI:
    10.1557/s0883769400053343
  • 发表时间:
    1999-10-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    M. George Craford;Stephen Forrest
  • 通讯作者:
    Stephen Forrest

Stephen Forrest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Forrest', 18)}}的其他基金

Overcoming Energy Loss in Organic Bulk Heterojunctions
克服有机体异质结中的能量损失
  • 批准号:
    1905401
  • 财政年份:
    2019
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Collaborative Research: OP-Interface States and Excitons at Heterojunctions Between Two and Three Dimensional Materials Systems
合作研究:二维和三维材料系统异质结处的OP界面态和激子
  • 批准号:
    1709163
  • 财政年份:
    2017
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Transfer in Strongly Coupled Hybrid Organic-Inorganic Systems
合作研究:强耦合有机-无机杂化系统中的能量转移
  • 批准号:
    1411064
  • 财政年份:
    2014
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Collaborative: Engineered Nonlinear Optical Materials Based on Hybrid Nanocomposites
协作:基于混合纳米复合材料的工程非线性光学材料
  • 批准号:
    1105575
  • 财政年份:
    2011
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
SOLAR: Ultrabroad spectral bandwidth excitonic thin film solar cells based on carbon nanotubes
太阳能:基于碳纳米管的超宽光谱带宽激子薄膜太阳能电池
  • 批准号:
    0934098
  • 财政年份:
    2009
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
ORGANICS/GOALI: Organic/Inorganic Hybrid Semiconductor Memories
有机/目标:有机/无机混合半导体存储器
  • 批准号:
    0715010
  • 财政年份:
    2006
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
ORGANICS/GOALI: Organic/Inorganic Hybrid Semiconductor Memories
有机/目标:有机/无机混合半导体存储器
  • 批准号:
    0437772
  • 财政年份:
    2004
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
Graduate Research Traineeships in Photonics
光子学研究生研究实习
  • 批准号:
    9554533
  • 财政年份:
    1995
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
Fundamental Limits to the Performance of InP-Based Monolithic Integrated Receivers
基于 InP 的单片集成接收器性能的基本限制
  • 批准号:
    9296223
  • 财政年份:
    1992
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
Fundamental Limits to the Performance of InP-Based Monolithic Integrated Receivers
基于 InP 的单片集成接收器性能的基本限制
  • 批准号:
    9014701
  • 财政年份:
    1991
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Continuing Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
  • 批准号:
    2336929
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Understanding and overcoming community roadblocks to achieving net-zero
了解并克服实现净零排放的社区障碍
  • 批准号:
    FL230100022
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Australian Laureate Fellowships
REU Site: Multidisciplinary Approaches for Overcoming Water Resources and Sustainable Engineering Challenges in Appalachian Regions
REU 网站:克服阿巴拉契亚地区水资源和可持续工程挑战的多学科方法
  • 批准号:
    2348814
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
  • 批准号:
    2346644
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
  • 批准号:
    2346645
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
Research aimed at overcoming perinatal complications caused by endometriosis and adenomyosis.
研究旨在克服子宫内膜异位症和子宫腺肌症引起的围产期并发症。
  • 批准号:
    24K19715
  • 财政年份:
    2024
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Overcoming Isolation and Scholarly Devaluation by Bolstering the Collective Agency of Black Discipline-Based Education Researchers
合作研究:通过支持黑人学科教育研究人员的集体机构来克服孤立和学术贬值
  • 批准号:
    2315023
  • 财政年份:
    2023
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Overcoming Barriers to Wild Species Improvement through Genetic Analysis of an Evolutionary Novelty in the Solanum
美国国家科学基金会生物学博士后奖学金:通过对茄属进化新颖性的遗传分析克服野生物种改良的障碍
  • 批准号:
    2305651
  • 财政年份:
    2023
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Fellowship Award
Overcoming the limits of anaerobic soil disinfestations by developing innovative methods based on scientific evidences
通过开发基于科学证据的创新方法来克服厌氧土壤灭虫的局限性
  • 批准号:
    23H02353
  • 财政年份:
    2023
  • 资助金额:
    $ 66.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了