Collaborative Research: OP-Interface States and Excitons at Heterojunctions Between Two and Three Dimensional Materials Systems
合作研究:二维和三维材料系统异质结处的OP界面态和激子
基本信息
- 批准号:1709163
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract: We are reaching the inevitable end of Moore's Law: the scaling law that says the number of transistors on a dense integrated circuit will double every 18 months to 2 years. This trend has been the engine of productivity growth of modern technological societies for at least 50 years. To extend this trend, an exciting class of two-dimensional materials is emerging as a major opportunity. Atomically thin layered materials, often called two dimensional materials, represent a radical departure from conventional semiconductors such as silicon that comprise current electronic devices, mimicking sheets of paper as opposed to large three dimensional blocks. This two dimensionality leads to unusual properties such as exceptionally low resistance along the sheet, yet poor conduction perpendicular to it. This makes it ideal for use in extremely high performance optical and electrical circuits. But, as in all electronic devices, junctions between materials play a central role in the overall functioning of the optical and electronic devices out of which they are made. In fact the junction is often the weakest link in the device performance chain. In this project, the research team is investigating the photophysics and energy transport at interfaces of dissimilar materials with different dimensionality. Specifically, the team explores junctions between organic semiconductors, traditional inorganic semiconductors such as silicon and gallium arsenide, and the new class of two dimensional compounds. The goal is to understand and enhance the energy and charge transport across the junctions, ultimately with the goal of vastly improving the performance of electronic and optical circuits. The potential applications of such hybrid materials include solar energy harvesting, light emitting diodes and secure quantum information technologies. This research project has a strong educational component that involves graduate and undergraduate student training, as well as summer research opportunities for underrepresented minority high school students. Technical Abstract: Understanding energy and charge transfer across interfaces between widely dissimilar semiconductor materials is key to realizing devices that exploit the unique advantages of the different contacting materials. The properties of interest that can be shared, or optimized in such materials combinations include ultrahigh optical oscillator strengths and mechanical flexibility of organics, along with the very large charge mobilities and quantum delocalization found in limited dimensional inorganic semiconductors. It is precisely these aspects that make organic molecules, two dimensional transition metal dichalcogenides and inorganic quantum wells attractive for optoelectronic applications. However, much less is known about interfaces that form between these material systems and their emergent properties. The fundamental nature of three dimensional organic and inorganic semiconductors forming junctions with two dimensional van der Waals solids presents an ideal platform to investigate interface physics. The team investigates three unique classes of heterointerfaces between systems of different composition and dimensionality: (i) organic semiconductor - two dimensional materials, (ii) inorganic semiconductor - two dimensional materials and (iii) lateral heterojunctions between dissimilar two dimensional materials. The combination of steady state and time resolved spectroscopic measurements including near field microscopies along with transport measurements are used to gain a fundamental appreciation of the physics governing the interplay of photons and electrons at these largely unexplored interfaces with the goal to develop quantum mechanical models grounded on observation of the energy and charge transfer processes across the interfaces, the formation of hybrid excited states and their transport as well as nonlinear optical properties. The anticipated outcomes include the ultimate exploitation of combinations of materials and dimensionalities through engineering of materials, interface properties, structures, and film morphologies and their tuning to achieve optimized performance for a particular application.
非技术摘要:我们正在到达摩尔定律的必然终点:比例定律表明,密集集成电路上的晶体管数量将每18个月到两年翻一番。至少50年来,这一趋势一直是现代技术社会生产率增长的引擎。为了延续这一趋势,一类令人兴奋的二维材料正在成为一个重大机遇。原子薄层状材料,通常被称为二维材料,代表着与硅等传统半导体的根本区别,硅等传统半导体构成了当前的电子设备,模仿的是纸张,而不是大型的三维块。这种二维性导致了不寻常的性质,例如沿薄片的极低电阻,但垂直于它的导电性很差。这使得它非常适合用于极高性能的光学和电子电路。但是,就像在所有电子设备中一样,材料之间的连接在制造它们的光学和电子设备的整体功能中发挥着核心作用。事实上,结点往往是器件性能链中最薄弱的一环。在这个项目中,研究小组正在研究不同维度的不同材料界面上的光物理和能量传输。具体地说,该团队探索了有机半导体、传统无机半导体(如硅和砷化镓)以及新型二维化合物之间的连接。其目标是了解和增强跨结的能量和电荷传输,最终目标是极大地改善电子和光学电路的性能。这种混合材料的潜在应用包括太阳能收集、发光二极管和安全量子信息技术。这一研究项目有很强的教育成分,包括研究生和本科生培训,以及为未被充分代表的少数族裔高中生提供暑期研究机会。技术摘要:了解不同半导体材料界面之间的能量和电荷传递是实现利用不同接触材料独特优势的器件的关键。在这种材料组合中可以共享或优化的感兴趣的特性包括超高的光学振子强度和有机物的机械灵活性,以及在有限维无机半导体中发现的非常大的电荷迁移率和量子离域。正是这些方面使得有机分子、二维过渡金属二卤化物和无机量子阱在光电子学应用中具有很大的吸引力。然而,关于这些物质系统之间形成的界面及其新出现的性质,人们所知的要少得多。三维有机和无机半导体与二维范德华固体形成结的基本性质为研究界面物理提供了一个理想的平台。该团队研究了不同组成和维度的系统之间的三种独特的异质界面:(I)有机半导体-二维材料,(Ii)无机半导体-二维材料和(Iii)不同二维材料之间的横向异质结。结合稳态和时间分辨光谱测量,包括近场显微镜和输运测量,以获得对控制这些基本上未被探索的界面上的光子和电子相互作用的物理基础的基本认识,目的是基于对界面上的能量和电荷转移过程、混合激发态的形成及其输运以及非线性光学性质的观察来开发量子力学模型。预期结果包括通过设计材料、界面属性、结构和薄膜形态并对其进行调整以实现特定应用的优化性能,从而最终利用材料和尺寸的组合。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons
- DOI:10.1021/acsphotonics.9b01357
- 发表时间:2020-01-01
- 期刊:
- 影响因子:7
- 作者:Deshmukh, Rahul;Marques, Paulo;Menon, Vinod M.
- 通讯作者:Menon, Vinod M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Forrest其他文献
Energy efficiency with organic electronics: Ching W. Tang revisits his days at Kodak
- DOI:
10.1557/mrs.2012.125 - 发表时间:
2012-06-08 - 期刊:
- 影响因子:4.900
- 作者:
Stephen Forrest;Nicole Casal Moore - 通讯作者:
Nicole Casal Moore
Craford, Forrest Named 1999 MRS Medalists
- DOI:
10.1557/s0883769400053343 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:4.900
- 作者:
M. George Craford;Stephen Forrest - 通讯作者:
Stephen Forrest
Stephen Forrest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Forrest', 18)}}的其他基金
Renewal: Overcoming Energy Loss in Organic Bulk Heterojunctions
更新:克服有机体异质结的能量损失
- 批准号:
2212146 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Overcoming Energy Loss in Organic Bulk Heterojunctions
克服有机体异质结中的能量损失
- 批准号:
1905401 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Energy Transfer in Strongly Coupled Hybrid Organic-Inorganic Systems
合作研究:强耦合有机-无机杂化系统中的能量转移
- 批准号:
1411064 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative: Engineered Nonlinear Optical Materials Based on Hybrid Nanocomposites
协作:基于混合纳米复合材料的工程非线性光学材料
- 批准号:
1105575 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SOLAR: Ultrabroad spectral bandwidth excitonic thin film solar cells based on carbon nanotubes
太阳能:基于碳纳米管的超宽光谱带宽激子薄膜太阳能电池
- 批准号:
0934098 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
ORGANICS/GOALI: Organic/Inorganic Hybrid Semiconductor Memories
有机/目标:有机/无机混合半导体存储器
- 批准号:
0715010 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
ORGANICS/GOALI: Organic/Inorganic Hybrid Semiconductor Memories
有机/目标:有机/无机混合半导体存储器
- 批准号:
0437772 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Graduate Research Traineeships in Photonics
光子学研究生研究实习
- 批准号:
9554533 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Fundamental Limits to the Performance of InP-Based Monolithic Integrated Receivers
基于 InP 的单片集成接收器性能的基本限制
- 批准号:
9296223 - 财政年份:1992
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Fundamental Limits to the Performance of InP-Based Monolithic Integrated Receivers
基于 InP 的单片集成接收器性能的基本限制
- 批准号:
9014701 - 财政年份:1991
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709601 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710514 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720291 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720116 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant