Random Media and Large Deviations

随机介质和大偏差

基本信息

  • 批准号:
    2214676
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This award supports the conference "Random media and large deviations" that will be held October 21-24, 2022, at the Courant Institute of the New York University in New York City. The conference has 26 confirmed speakers in these very active and fundamental areas at the intersection of probability, analysis, and mathematical physics. Many of the complex systems which will be discussed in this conference aim to describe real world phenomena. Results proven for the mathematical models will provide predictions applicable to the real systems. Besides physical applications, complex systems have found many applications in computer science, machine learning, data science, bioinformatics, chemistry and even in areas like ecology and earth science. This gathering will lead to cross-fertilization between these areas as well as inspire and inform a new generation of researchers. It is expected that many graduate students, recent PhDs, and other early career researchers will participate in this conference.The main focus of this conference is the rigorous study of random motion in random media. The goal is to explain how random microscopic systems display predictable and statistically universal collective macroscopic behavior. Large deviations are key to understanding such problems, especially in high dimensions. Many open problems remain in explaining how complicated energy landscapes govern the prestationary behavior of random motion. Different approaches in this area will be represented at the conference, including spin-glasses, stochastic partial differential equations, and random matrix theory. The website for this conference is: https://cims.nyu.edu/conferences/zeutoni/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持将于2022年10月21日至24日在纽约市纽约大学柯朗研究所举行的“随机媒体和大偏差”会议。这次会议有26确认发言人在这些非常活跃和基本领域的交叉概率,分析和数学物理。在这次会议上将要讨论的许多复杂系统旨在描述真实的世界现象。证明的数学模型的结果将提供适用于真实的系统的预测。除了物理应用,复杂系统在计算机科学、机器学习、数据科学、生物信息学、化学甚至生态学和地球科学等领域都有许多应用。 这次会议将导致这些领域之间的交叉施肥,以及激励和通知新一代的研究人员。预计许多研究生,最近的博士和其他早期职业研究人员将参加这次会议。这次会议的主要焦点是随机介质中随机运动的严格研究。目标是解释随机微观系统如何显示可预测的和统计上普遍的集体宏观行为。大偏差是理解这类问题的关键,特别是在高维情况下。在解释复杂的能量景观如何支配随机运动的前定态行为方面,仍然存在许多悬而未决的问题。在这一领域的不同方法将代表在会议上,包括自旋玻璃,随机偏微分方程,随机矩阵理论。本次会议的网站是:https://cims.nyu.edu/conferences/zeutoni/This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Bourgade其他文献

Optimal Rigidity and Maximum of the Characteristic Polynomial of Wigner Matrices
  • DOI:
    10.1007/s00039-025-00701-5
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Paul Bourgade;Patrick Lopatto;Ofer Zeitouni
  • 通讯作者:
    Ofer Zeitouni

Paul Bourgade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Bourgade', 18)}}的其他基金

Spectral and Hierarchical Properties of Random Matrices
随机矩阵的谱和层次性质
  • 批准号:
    2054851
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Spectral Properties of Random Matrices
随机矩阵的谱特性
  • 批准号:
    1812114
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Dynamics, aging and universality in complex systems
复杂系统的动力学、老化和通用性
  • 批准号:
    1707943
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Analytic Methods for the Random Matrix Universality Class
随机矩阵普适性类的解析方法
  • 批准号:
    1513587
  • 财政年份:
    2015
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
  • 批准号:
    1507032
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
  • 批准号:
    1404693
  • 财政年份:
    2013
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
  • 批准号:
    1208859
  • 财政年份:
    2012
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似海外基金

Innovative Butterfly-Compressed Microlocal Hadamard-Babich Integrators for Large-Scale High-Frequency Wave Modeling and Inversion in Variable Media
用于可变介质中大规模高频波建模和反演的创新型蝶形压缩微局域 Hadamard-Babich 积分器
  • 批准号:
    2309534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Electromagnetic Scattering from a Large Cavity in Heterogeneous Media: Theory and Algorithm
异质介质中大空腔的电磁散射:理论和算法
  • 批准号:
    567866-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Postdoctoral Fellowships
RAPID: Documenting and understanding large-scale migrations between social media platforms
RAPID:记录和理解社交媒体平台之间的大规模迁移
  • 批准号:
    2309485
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Diffusion in random media: Quantifying the large-scale effects
随机介质中的扩散:量化大规模效应
  • 批准号:
    EP/W018616/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fellowship
Large-scale multi-phase flow simulation for foam flooding method in porous media
多孔介质泡沫驱大规模多相流模拟
  • 批准号:
    22K14178
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Information Triage for Social Media Reliability in Large Disasters
大型灾难中社交媒体可靠性的信息分类
  • 批准号:
    18KT0100
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Large Scale Social Media Data Analysis Considering Spatio-Temporal Context
考虑时空背景的大规模社交媒体数据分析研究
  • 批准号:
    16K16057
  • 财政年份:
    2016
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Early Detection of Buzzwords Based on Large-scale Social Media Analysis
基于大规模社交媒体分析的流行语早期检测
  • 批准号:
    26330351
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information propagation process and social influence by social media: An empirical study based on large scale data
社交媒体的信息传播过程与社会影响:基于大规模数据的实证研究
  • 批准号:
    25285181
  • 财政年份:
    2013
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Story-Oriented Media Analysis/Recommendation/Visualization System for Large-Scale Data
面向故事的大规模数据媒体分析/推荐/可视化系统
  • 批准号:
    25330326
  • 财政年份:
    2013
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了