Analytic Methods for the Random Matrix Universality Class
随机矩阵普适性类的解析方法
基本信息
- 批准号:1513587
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will study random matrices, a field originating with Eugene Wigner's idea that random matrices model spectral behavior of physical systems. Over the years random matrices have found applications beyond pure mathematics, and are being used in statistics, computer science, telecommunications, and more generally information networks. This research project's focus is universality -- the phenomenon that the limiting spectral statistics depend only on the symmetry type and not on other details of the underlying system. Random matrix statistics now find use in many aspects of integrable systems, growth models, and number theory. Deep progress has been achieved in the past years, and universality has been established for a growing class of random matrices. This project will advance understanding in this fundamental area.This project explores the following research topics:(1) Universality and quantum unique ergodicity for random band matrices. The motivation is to try to approach the Anderson transition via these toy models for random Schrodinger operators on a lattice.(2) Perturbative analysis of eigenvectors in a non-perturbative regime, via the eigenvector moment flow, a new random walk introduced recently. (3) Log-correlated fields and random spectra. This includes individual fluctuations of eigenvalues of Wigner matrices and beta ensembles. (4) Extremal statistics of random matrices, through the largest and smallest gaps, and extremes of characteristic polynomials.(5) A study of non-Hermitian random matrix theory, with connections between 2D Coulomb gases and the Gaussian free field.In order to understand Wigner's vision, in their recent proofs of fixed energy universality and eigenvector universality the investigator and collaborators developed new tools of interest for the above projects. These include random walks in dynamic random environments, coupling methods, and homogenization theory for partial differential equations with time-dependent random coefficients.
研究人员将研究随机矩阵,这一领域起源于尤金·维格纳的想法,即随机矩阵模拟物理系统的光谱行为。多年来,随机矩阵的应用超越了纯粹的数学,并被用于统计学、计算机科学、电信以及更广泛的信息网络中。这项研究项目的重点是普遍性--即极限光谱统计只取决于对称类型而不取决于底层系统的其他细节的现象。现在,随机矩阵统计在可积系统、增长模型和数论的许多方面都有应用。在过去的几年里,已经取得了深刻的进展,并为越来越多的随机矩阵建立了普适性。本课题的研究内容包括:(1)随机带矩阵的普适性和量子唯一遍历性。其动机是试图通过这些随机薛定谔算子的玩具模型来接近Anderson相变。(2)通过最近引入的一种新的随机游动--特征向量矩流,对非微扰区域的本征向量进行微扰分析。(3)对数相关场和随机谱。这包括维格纳矩阵和贝塔系综本征值的个别波动。(4)随机矩阵的极值统计,通过最大和最小间隙,以及特征多项式的极值。(5)非厄米随机矩阵理论的研究,与二维库仑气体和高斯自由场之间的联系。为了理解Wigner的愿景,在他们最近关于固定能量普适性和本征向量普适性的证明中,研究人员和合作者为上述项目开发了感兴趣的新工具。其中包括动态随机环境中的随机游动、耦合方法和具有随时间变化的随机系数的偏微分方程齐化理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Bourgade其他文献
Optimal Rigidity and Maximum of the Characteristic Polynomial of Wigner Matrices
- DOI:
10.1007/s00039-025-00701-5 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Paul Bourgade;Patrick Lopatto;Ofer Zeitouni - 通讯作者:
Ofer Zeitouni
Paul Bourgade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Bourgade', 18)}}的其他基金
Spectral and Hierarchical Properties of Random Matrices
随机矩阵的谱和层次性质
- 批准号:
2054851 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Spectral Properties of Random Matrices
随机矩阵的谱特性
- 批准号:
1812114 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Dynamics, aging and universality in complex systems
复杂系统的动力学、老化和通用性
- 批准号:
1707943 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1507032 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1404693 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1208859 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
- 批准号:
2233897 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Machine learning methods for generation of random images and equilibrated configurations of gluon fields in Quantum Chromodynamics
量子色动力学中随机图像生成和胶子场平衡配置的机器学习方法
- 批准号:
2889923 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
An Exploration of Wavelet Methods for PDEs: Bases, Dictionaries, and Random Features
偏微分方程小波方法的探索:基础、字典和随机特征
- 批准号:
575023-2022 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
University Undergraduate Student Research Awards
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152999 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2152998 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Methods for statistical analysis with nonmonotone missing at random data
随机数据非单调缺失的统计分析方法
- 批准号:
DDG-2022-00021 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Development Grant
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
- 批准号:
RGPIN-2016-05702 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual