Universality of Random Matrices Statistics
随机矩阵统计的普遍性
基本信息
- 批准号:1507032
- 负责人:
- 金额:$ 2.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random matrices are models for disordered physical systems, describing key properties of their energy levels or eigenstates. This probabilistic field now overlaps many aspects of integrable systems, growth models, number theory, or multivariate statistics. The mathematical understanding of these models has considerably improved over the past ten years, based on analytic methods for invariant models, and probabilistic methods for models with underlying independence, including the analysis of Dyson's Brownian motion. This research project first concerns the local universality of such statistics, enlarging the class of models presenting the random matrices type of interactions; this includes the study of the so-called beta-ensembles, proving that the local interactions of the energy levels of many random Hamiltonian systems only depend on the their invariance type, and the analysis of universality for bidimensional spectra, appearing in non-Hermitian random matrix theory. Another part of this project concerns the mesoscopic scale in random matrix theory, deriving new statistics relevant in analytic number theory and random energy models.Indeed, surprisingly random matrix theory overlaps fundamental problems in analytic number theory, statistical physics and statistics. Analogously to the Gaussian distribution, describing the fluctuations of many systems with underlying independence, random matrix theory statistics appear universally for many strongly correlated systems. This as confirmed by physical and numerical experiments concerning the energy levels of quantum systems, waiting times in public transports, the gap size distribution of parked cars, growing interfaces of liquid crystal turbulence, or typical and extreme spacings between zeros of L-functions. Random matrices are paradigms for statistics appearing in very distinct fields, and an increasingly important part of probability theory is devoted to understanding these connections.
随机矩阵是无序物理系统的模型,描述了它们的能级或特征态的关键特性。这个概率领域现在与可积系统、增长模型、数论或多元统计的许多方面重叠。在过去十年中,基于对不变模型的分析方法和对具有潜在独立性的模型的概率方法,包括对戴森布朗运动的分析,对这些模型的数学理解有了很大的提高。本研究项目首先关注这些统计的局部普遍性,扩大了呈现随机矩阵型相互作用的模型类别;这包括所谓的β系综的研究,证明了许多随机哈密顿系统的能级的局部相互作用只依赖于它们的不变性类型,并分析了二维谱的普惠性,出现在非厄米随机矩阵理论中。本项目的另一部分涉及随机矩阵理论中的介观尺度,推导出与解析数论和随机能量模型相关的新统计。事实上,令人惊讶的是,随机矩阵理论与解析数论、统计物理和统计学中的基本问题重叠。与描述具有潜在独立性的许多系统的波动的高斯分布类似,随机矩阵理论统计量在许多强相关系统中普遍出现。关于量子系统的能级、公共交通的等待时间、停放汽车的间隙大小分布、液晶湍流界面的增长,或l函数零点之间的典型和极端间隔,这些物理和数值实验都证实了这一点。随机矩阵是统计学的范例,出现在非常不同的领域,概率论中越来越重要的一部分致力于理解这些联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Bourgade其他文献
Optimal Rigidity and Maximum of the Characteristic Polynomial of Wigner Matrices
- DOI:
10.1007/s00039-025-00701-5 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Paul Bourgade;Patrick Lopatto;Ofer Zeitouni - 通讯作者:
Ofer Zeitouni
Paul Bourgade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Bourgade', 18)}}的其他基金
Spectral and Hierarchical Properties of Random Matrices
随机矩阵的谱和层次性质
- 批准号:
2054851 - 财政年份:2021
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Spectral Properties of Random Matrices
随机矩阵的谱特性
- 批准号:
1812114 - 财政年份:2018
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Dynamics, aging and universality in complex systems
复杂系统的动力学、老化和通用性
- 批准号:
1707943 - 财政年份:2017
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Analytic Methods for the Random Matrix Universality Class
随机矩阵普适性类的解析方法
- 批准号:
1513587 - 财政年份:2015
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1404693 - 财政年份:2013
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1208859 - 财政年份:2012
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
相似海外基金
Spectral measures of random matrices and universality of random Jacobi matrices
随机矩阵的谱测度和随机雅可比矩阵的普适性
- 批准号:
16K17616 - 财政年份:2016
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Universality and semi-classical behavior in 2+1 dimensional integrable systems and random matrices
2 1 维可积系统和随机矩阵中的普遍性和半经典行为
- 批准号:
1733967 - 财政年份:2016
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
- 批准号:
1500141 - 财政年份:2015
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Universality and semi-classical behavior in 2+1 dimensional integrable systems and random matrices
2 1 维可积系统和随机矩阵中的普遍性和半经典行为
- 批准号:
1401268 - 财政年份:2014
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Universality of random matrices and complex networks
随机矩阵和复杂网络的普遍性
- 批准号:
25400397 - 财政年份:2013
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1404693 - 财政年份:2013
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Universality of Random Matrices Statistics
随机矩阵统计的普遍性
- 批准号:
1208859 - 财政年份:2012
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Universality in random matrices and integrable systems: asymptotic analysis via Riemann-Hilbert and d-bar methods
随机矩阵和可积系统的普遍性:通过 Riemann-Hilbert 和 d-bar 方法进行渐近分析
- 批准号:
0800979 - 财政年份:2008
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Universality of Random Matrices and Semiclassical Quantum Theory
随机矩阵的普遍性和半经典量子理论
- 批准号:
20540372 - 财政年份:2008
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Free probability and the universality conjecture for random matrices
自由概率和随机矩阵的普遍性猜想
- 批准号:
269814-2003 - 财政年份:2006
- 资助金额:
$ 2.2万 - 项目类别:
Discovery Grants Program - Leadership Support