Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
基本信息
- 批准号:2216048
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryLayered transition metal oxide and hydroxide materials capable of hosting anions could have many energy- and environment-related applications. However, most metal oxides and hydroxides cannot reversibly uptake and release anions, limiting their sustainable applications in various devices. In this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), the research team aims to understand how chloride and sulfate anions move in the layered materials and develop a library of layered transition metal oxide and hydroxide materials for reversible anion uptake and release. Atomic-scale modeling and quantum theory are used to build a property database of layered oxides, and gain fundamental insights into atomic interactions between anion and layered materials. The close integration of theory and experiment helps determine the underlying mechanisms of the anion insertion and extraction in the interlayer region of the host materials and to establish the fundamental roles of material local structures, anion, and water molecules for reversible hosting of chloride and sulfate into layered metal hydroxides. This project enhances education and outreach efforts by the research team to increase scientific engagement and participation from underrepresented groups through a range of activities aimed at the general public, high school students and teachers, undergraduate students, and graduate students.Technical SummaryLayered double hydroxides (LDHs) have two-dimensional positively charged nanosheets and host negatively charged ions and structural water molecules in the interlayer regions, offering advantages in a wide range of energy- and environment-related applications, including multivalent anion batteries, high-capacity desalination, and ion remediation. However, there is a lack of fundamental understanding of how the local structure and their atomic interaction with anions affect the reversible anion uptake and release in LDHs. In this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), the research team aims to understand the interplay between ion-hydration, atomic transport, material defects, and charge transfer on anion insertion and extraction in transition metal oxide and hydroxide layered materials. The team proposes to synthesize Fe- and Co-based LDH, [M2+1-x(M/Ni)3+x(HO−)2]x+ [(An−)n/2 · yH2O]x- (M: Fe, Co; A: inserted anion groups such as Cl- and SO42-,), where Ni3+-doping immobilizes the structural water in the interlayers and stabilizes the interlayer structure. The team plans to optimize LDH local structures (e.g., disorder and site defect) and long-range structure (e.g., interlayer distance, crystalline phase), guided by the atomic modeling, to assist the anion uptake and release. The team plans to use neutron/X-ray total scattering and pair distribution function analysis and X-ray absorption spectroscopy to study how metal-oxygen (M-O) octahedra of LDHs interact with anions, water, and cation. The density functional theory calculations, advanced sampling, and molecular dynamics simulations are used to gain atomic-scale insights into interactions between M-O octahedra in the proposed LDHs, anions, and water, providing guidelines for experimentally tuning of the interfacial structuring of the LDHs. The interwoven nature between the experimental and modeling efforts provides better-resolved structural details via experiments and simulations informing each other. The education and outreach efforts advance the team's goals in increasing participation of the students from underrepresented groups via an undergraduate researcher exchange program, hands-on activities for high school students and teachers, and advanced research training experiences for undergraduate and graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够容纳阴离子的层状过渡金属氧化物和氢氧化物材料可以具有许多与能源和环境相关的应用。然而,大多数金属氧化物和氢氧化物不能可逆地吸收和释放阴离子,限制了它们在各种设备中的可持续应用。 在该项目中,由材料研究部的固态和材料化学计划以及刺激竞争研究的既定计划(EPSCoR)支持,研究团队旨在了解氯离子和硫酸根阴离子如何在层状材料中移动,并开发一个层状过渡金属氧化物和氢氧化物材料库,用于可逆阴离子吸收和释放。 原子尺度模型和量子理论被用来建立层状氧化物的属性数据库,并获得对阴离子和层状材料之间的原子相互作用的基本见解。理论和实验的紧密结合有助于确定阴离子在主体材料层间区域的插入和提取的潜在机制,并建立材料局部结构、阴离子和水分子在氯离子和硫酸根可逆托管到层状金属氢氧化物中的基本作用。该项目加强了研究小组的教育和外联工作,通过一系列针对公众、高中学生和教师、本科生、技术概述层状双氢氧化物(LDH)具有两个-三维带正电荷的纳米片并在夹层区域中容纳带负电荷的离子和结构水分子,在广泛的能源和环境相关应用中提供优势,包括多价阴离子电池、高容量脱盐和离子修复。然而,人们对LDHs的局部结构及其与阴离子的相互作用如何影响其可逆的阴离子吸收和释放缺乏基本的了解。在该项目中,由材料研究部的固态和材料化学计划以及刺激竞争研究的既定计划(EPSCoR)支持,研究团队旨在了解离子水合,原子传输,材料缺陷和电荷转移之间的相互作用在过渡金属氧化物和氢氧化物层状材料中阴离子插入和提取。该团队建议合成基于Fe和Co的LDH,[M2+1-x(M/Ni)3+x(HO−)2]x+ [(An−)n/2 ·yH 2 O]x-(M:Fe,Co; A:插入的阴离子基团,如Cl-和SO 42-),其中Ni 3+掺杂固定了夹层中的结构水并稳定了夹层结构。该团队计划优化LDH局部结构(例如,无序和位置缺陷)和长程结构(例如,层间距离,结晶相),由原子建模引导,以帮助阴离子吸收和释放。该团队计划使用中子/X射线总散射和对分布函数分析以及X射线吸收光谱来研究LDHs的金属氧(M-O)八面体如何与阴离子,水和阳离子相互作用。密度泛函理论计算,先进的采样,和分子动力学模拟被用来获得原子尺度的见解M-O八面体之间的相互作用,在拟议的LDHs,阴离子和水,实验调谐的LDHs的界面结构提供了指导方针。实验和建模工作之间的交织性质通过实验和模拟相互通知提供了更好的解决结构细节。教育和推广工作推进了团队的目标,即通过本科生研究人员交流计划,高中学生和教师的动手活动,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Badri Narayanan其他文献
Digital bead modeling for wire-arc directed energy deposition
电弧定向能沉积的数字珠粒建模
- DOI:
10.1016/j.jmapro.2024.08.060 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:6.800
- 作者:
Jesse Goodwin;Jason Flamm;Badri Narayanan;Kyle Saleeby;Tommy Tucker;Christopher Saldaña - 通讯作者:
Christopher Saldaña
Synthesis and post-heating treatment of inorganic NaF·Nasub3/subSbSsub4/sub solid electrolytes
无机NaF·Na₃SbS₄固体电解质的合成及后热处理
- DOI:
10.1016/j.nanoen.2025.110770 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:17.100
- 作者:
Selim Halacoglu;Xiaolin Guo;Yan Chen;Dunji Yu;Badri Narayanan;Jacek B. Jasinski;Hui Wang - 通讯作者:
Hui Wang
Welding Consumable Developments in the Aftermath of the Northridge Earthquake
- DOI:
10.1007/bf03266464 - 发表时间:
2013-02-07 - 期刊:
- 影响因子:2.500
- 作者:
D. J. Kotecki;Badri Narayanan - 通讯作者:
Badri Narayanan
Badri Narayanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Badri Narayanan', 18)}}的其他基金
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
- 批准号:
2227165 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant