Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials

合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂

基本信息

项目摘要

Lithium is a vital component of many modern energy storage systems, including lithium-ion batteries. Demand for this critical mineral is growing rapidly, coinciding with the clean energy transition, and will soon outstrip lithium supplies at the current rate. Lithium production from land-based lithium sources (e.g., ore and brine) may be insufficient to meet the anticipated demand. Seawater is a promising, plentiful source of lithium, but recovering lithium from seawater is technologically challenging. Current recovery methods are limited by low extraction capacity, difficulty selectively separating lithium ions from chemically similar ions found in seawater, and high operation costs. Professor Xiaowei Teng at Worcester Polytechnic Institute (WPI) and Professor Badri Narayanan at the University of Louisville (UL) aim to address these technological limitations by developing new classes of manganese oxide layered materials for the selective extraction of lithium from seawater using electrochemical methods. The investigators will integrate materials synthesis and characterization methods with electrochemical performance assessment and atomistic computational modeling to reveal how the material structure affects the cation transport behavior. The research approach lies at the interface of chemical engineering, materials science, computational chemistry, and electrochemistry, providing a valuable opportunity for cross-disciplinary training of undergraduate and graduate students. The project will also support outreach activities to increase the scientific engagement of high-school students and teachers. The project aims to understand the interplay between dopants, defect chemistry, ion-hydration, and ion transport in structurally modified birnessite (MnO2)-based layered materials on selective lithium extraction from seawater. The research approach will combine wet-chemistry synthesis, electrochemical experiments, operando X-ray characterization, and a variety of atomistic simulation techniques to identify the critical characteristics of MnO2-based electrodes that (a) favor insertion of lithium ions while rejecting the larger competing ions (e.g., sodium, magnesium), (b) promote kinetics of lithium-ion transport while suppressing diffusion of competing ions, and (c) enable high-capacity lithium-ion extraction at wide operation voltage windows while avoiding water dissociation. MnO2 structure, composition, defect concentration/distribution, nature of dopants, and interlayer distance, as well as synthesis conditions, will be examined. Undergraduate students from underrepresented groups in STEM will be recruited to participate in the research at the WPI and UL laboratories. A summer undergraduate student exchange program between the two laboratories will be initiated to broaden students’ exposure to new technical concepts and research environments. High-school science teachers will be invited to complete a seven-week summer research program to develop hands-on science learning pedagogy and materials and improve scientific literacy and engagement among their students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂是许多现代储能系统的重要组成部分,包括锂离子电池。对这种关键矿物的需求正在迅速增长,与清洁能源转型相吻合,并将很快超过目前的锂供应。从陆基锂源(例如,矿石和盐水)可能不足以满足预期的需求。海水是锂的一种有前途的丰富来源,但从海水中回收锂在技术上具有挑战性。目前的回收方法受到低提取能力、难以从海水中发现的化学相似离子中选择性地分离锂离子以及高操作成本的限制。伍斯特理工学院(WPI)的Xiaowei Teng教授和路易斯维尔大学(UL)的Badri Narayanan教授旨在通过开发新型氧化锰层状材料来解决这些技术限制,以便使用电化学方法从海水中选择性提取锂。研究人员将材料合成和表征方法与电化学性能评估和原子计算建模相结合,以揭示材料结构如何影响阳离子传输行为。该研究方法位于化学工程,材料科学,计算化学和电化学的接口,为本科生和研究生的跨学科培训提供了宝贵的机会。该项目还将支持外联活动,以增加高中学生和教师的科学参与。该项目旨在了解结构改性水钠锰矿(MnO 2)层状材料中掺杂剂,缺陷化学,离子水合和离子传输之间的相互作用,以及从海水中选择性提取锂。该研究方法将结合联合收割机湿化学合成、电化学实验、操作X射线表征和各种原子模拟技术,以确定基于MnO 2的电极的关键特性,这些特性(a)有利于锂离子的插入,同时拒绝较大的竞争离子(例如,钠、镁),(B)促进锂离子传输动力学,同时抑制竞争离子的扩散,和(c)能够在宽操作电压窗口下进行高容量锂离子提取,同时避免水离解。二氧化锰结构,组成,缺陷浓度/分布,掺杂剂的性质,和层间距离,以及合成条件,将被检查。来自STEM代表性不足群体的本科生将被招募参加WPI和UL实验室的研究。两个实验室之间的暑期本科生交流计划将启动,以扩大学生接触新的技术概念和研究环境。高中科学教师将被邀请完成一个为期七周的暑期研究计划,以开发实践科学学习教学法和材料,提高学生的科学素养和参与度。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Badri Narayanan其他文献

Digital bead modeling for wire-arc directed energy deposition
电弧定向能沉积的数字珠粒建模
  • DOI:
    10.1016/j.jmapro.2024.08.060
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Jesse Goodwin;Jason Flamm;Badri Narayanan;Kyle Saleeby;Tommy Tucker;Christopher Saldaña
  • 通讯作者:
    Christopher Saldaña
Synthesis and post-heating treatment of inorganic NaF·Nasub3/subSbSsub4/sub solid electrolytes
无机NaF·Na₃SbS₄固体电解质的合成及后热处理
  • DOI:
    10.1016/j.nanoen.2025.110770
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    17.100
  • 作者:
    Selim Halacoglu;Xiaolin Guo;Yan Chen;Dunji Yu;Badri Narayanan;Jacek B. Jasinski;Hui Wang
  • 通讯作者:
    Hui Wang
Welding Consumable Developments in the Aftermath of the Northridge Earthquake
  • DOI:
    10.1007/bf03266464
  • 发表时间:
    2013-02-07
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    D. J. Kotecki;Badri Narayanan
  • 通讯作者:
    Badri Narayanan

Badri Narayanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Badri Narayanan', 18)}}的其他基金

Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
  • 批准号:
    2216048
  • 财政年份:
    2022
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
  • 批准号:
    2308361
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
  • 批准号:
    2323701
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Computationally Driven Discovery and Synthesis of 2D Materials through Selective Etching
合作研究:DMREF:通过选择性蚀刻计算驱动的 2D 材料发现和合成
  • 批准号:
    2324157
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Computationally Driven Discovery and Synthesis of 2D Materials through Selective Etching
合作研究:DMREF:通过选择性蚀刻计算驱动的 2D 材料发现和合成
  • 批准号:
    2324156
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
  • 批准号:
    2227164
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Atomically precise catalyst design for selective bond activation
合作研究:DMREF:用于选择性键激活的原子精确催化剂设计
  • 批准号:
    2323700
  • 财政年份:
    2023
  • 资助金额:
    $ 23.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了