PREC Track 1: Cal State LA - MolSSI PREC Pathway to Diversity Program
PREC 轨道 1:加州州立大学洛杉矶分校 - MolSSI PREC 多元化途径计划
基本信息
- 批准号:2216858
- 负责人:
- 金额:$ 88.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Cal State LA-MolSSI PREC (Partnership for Research and Education in Chemistry) Pathway to Diversity Program is a collaboration between California State University, Los Angeles, a comprehensive public university and Hispanic Serving Institution, and the Molecular Software Sciences Institute (MolSSI) at Virginia Tech to incorporate machine learning (ML) techniques in molecular simulation research and develop innovative pedagogical materials to train early-stage undergraduate students in computational science. Cal State LA undergraduate and master’s students will participate year-round in mentored research and attend an annual workshop at MolSSI. Community college students will take part in mentored summer research experiences at Cal State LA alongside these students. Additionally, early-stage undergraduate students from local community colleges and Cal State LA will participate in an annual computational workshop taught by instructors from Cal State LA and MolSSI that emphasizes scientific programming and a variety of molecular simulation and ML techniques, as well as professional development activities. Overall, this PREC aims to make a significant contribution to the recruitment and training of the next generation of molecular simulation scientists who will require a deep understanding of both physical and chemical principles and computational techniques.Machine learning (ML) methods have transformed the fields of chemistry and molecular sciences in recent years, and will continue to do so in the future. The Cal State LA-MolSSI PREC (Partnership for Research and Education in Chemistry) will be organized around three thematic research thrusts that each use ML and physics-based simulation methods to create new computational models applicable to a range of chemical and biochemical phenomena. Thrust 1 will focus on developing ML approaches for computing the relative entropies and thermodynamic stabilities of molecular crystal polymorphs. Thrust 2 will aim to develop a hybrid physics-based and ML approach for predicting the relative binding free energies of small protein-ligand complexes. Thrust 3 will use ML to parametrize small molecule force fields that include a direct polarization electrostatic model and other advanced nonbonded potentials. The results of this research will help answer pressing questions in chemistry, biophysics, materials science, and pharmacology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。加州大学洛杉矶分校-MolSSI PREC(化学研究和教育伙伴关系)多样性之路计划是加州州立大学,洛杉矶,一所综合性公立大学和西班牙裔服务机构之间的合作,和弗吉尼亚理工大学的分子软件科学研究所(MolSSI),将机器学习(ML)技术纳入分子模拟研究,并开发创新的教学材料,以培训早期-在计算科学中培养本科生。加州州立大学洛杉矶分校的本科生和硕士生将全年参加指导研究,并参加MolSSI的年度研讨会。社区学院的学生将与这些学生一起参加加州州立大学洛杉矶分校的暑期研究活动。此外,来自当地社区学院和加州州立大学洛杉矶分校的早期本科生将参加由加州州立大学洛杉矶分校和MolSSI的讲师讲授的年度计算研讨会,该研讨会强调科学编程和各种分子模拟和ML技术,以及专业发展活动。总的来说,该PREC旨在为招募和培养下一代分子模拟科学家做出重大贡献,这些科学家需要深入了解物理和化学原理以及计算技术。机器学习(ML)方法近年来已经改变了化学和分子科学领域,并将在未来继续这样做。加州州立大学LA-MolSSI PREC(化学研究和教育合作伙伴关系)将围绕三个主题研究重点组织,每个主题研究重点都使用ML和基于物理的模拟方法来创建适用于一系列化学和生物化学现象的新计算模型。重点1将集中于发展ML方法计算相对熵和分子晶体多晶型物的热力学稳定性。推力2的目标是开发一种基于混合物理和ML的方法,用于预测小蛋白质-配体复合物的相对结合自由能。推力3将使用ML来参数化小分子力场,包括直接极化静电模型和其他先进的非键合势。这项研究的结果将有助于回答化学、生物物理学、材料科学和药理学方面的紧迫问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calculating the Binding Entropy of Host-Guest Systems with Physics-Guided Neural Networks
使用物理引导神经网络计算主客体系统的结合熵
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rebel, Alles;Risheh, Ali;Massoudian, Negin;Forouzesh, Negin
- 通讯作者:Forouzesh, Negin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olaseni Sode其他文献
Theoretical investigation of the vibrational structure of the Ar–CO<sub>2</sub> complex
- DOI:
10.1016/j.jms.2021.111512 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Olaseni Sode;Jesus Ruiz;Steve Peralta - 通讯作者:
Steve Peralta
Olaseni Sode的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olaseni Sode', 18)}}的其他基金
REU Site: Research Experience for Undergraduates in Chemistry and Biochemistry
REU 网站:化学和生物化学本科生的研究经验
- 批准号:
2150413 - 财政年份:2022
- 资助金额:
$ 88.65万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant