Collaborative Research: Thermal Drawing of Composite Fibers for Wearable Energy Storage Textiles

合作研究:可穿戴储能纺织品复合纤维的热拉伸

基本信息

  • 批准号:
    2217172
  • 负责人:
  • 金额:
    $ 25.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This grant supports research that will advance the fundamental understanding of the manufacturing process of multifunctional composite fibers through thermal drawing to enable energy storage textiles for next-generation wearable electronics and smart textiles. Thermal drawing, a manufacturing process that pulls fibers out of melts, is the most commonly used fiber production method in the textile industry. Its capability of manufacturing multifunctional composite fibers has been limited due to its susceptibility to melt fracture. This research will fill the knowledge gap on how the composition and nanostructures of the composites affect the failure mechanisms during the thermal drawing process. With the new fundamental knowledge, composites containing nanostructured carbon electrodes as the filler and polymer electrolytes as the matrix will be designed and processed into wearable fibers. Such composite fibers can be woven into energy storage textiles to serve as the power source for wearable electronics and smart textiles in many consumer, medical, and military applications. This research will promote US manufacturing science and technology and help preserve US technological and economic dominance in wearable and smart electronics. The research tasks will be used to train highly skilled engineers and scientists in STEM fields for the US manufacturing workforce. The outreach activities associated with this research will promote the early exposure of K-12 students, especially those from women and underrepresented minority groups, to STEM.While thermal drawing is a versatile tool capable of scalable manufacturing of multimaterial multifunctional fibers, it has yet to achieve its full potential in manufacturing composite fibers due to the limited understanding of its failure mechanism. This research designs and experiments on new electrode-electrolyte composites with one-dimensional carbon nanomaterials and solid polymer electrolytes and seeks to understand the fundamental failure mechanisms during the thermal drawing of such composites. The failure mechanism will be elucidated using transport phenomena modeling and in-process rheological measurements. As a result, the research will elucidate 1) the currently unknown structural effects of one-dimensional nanofillers on the rate-limiting failure mechanisms during the thermal drawing processing of composite fibers, and 2) the widely observed but unexplained process effect of thermal drawing on the alignment and dispersion of the nanofillers in the produced composite textile fibers. This better understanding of the failure, alignment, and dispersion mechanisms will provide a new solution to produce supercapacitor-type energy storage textiles and enable the continuous manufacturing of new functional materials and devices using thermal drawing from a preform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该资助支持的研究将通过热拉伸来推进对多功能复合纤维制造过程的基本理解,从而为下一代可穿戴电子产品和智能纺织品提供储能纺织品。热拉伸是一种将纤维从熔体中拉出的制造工艺,是纺织工业中最常用的纤维生产方法。由于其对熔体破裂的敏感性,其制造多功能复合纤维的能力受到限制。该研究将填补复合材料的组成和纳米结构如何影响热拉伸过程中的失效机制的知识空白。利用这些新的基础知识,可以设计出以纳米碳电极为填料,以聚合物电解质为基体的复合材料,并将其加工成耐磨纤维。这种复合纤维可以编织成储能纺织品,作为许多消费者、医疗和军事应用中可穿戴电子产品和智能纺织品的电源。这项研究将促进美国制造业的科学和技术,并有助于保持美国在可穿戴和智能电子产品领域的技术和经济优势。这些研究任务将用于为美国制造业劳动力培训STEM领域的高技能工程师和科学家。与这项研究相关的推广活动将促进K-12学生,特别是那些来自女性和代表性不足的少数群体的学生,早期接触STEM。虽然热拉伸是一种多功能的工具,能够可扩展地制造多材料多功能纤维,但由于对其失效机制的了解有限,它在制造复合纤维方面尚未充分发挥其潜力。本研究设计和实验的新型电极电解质复合材料与一维碳纳米材料和固体聚合物电解质,并试图了解这种复合材料的热拉伸过程中的基本故障机制。故障机制将阐明使用传输现象建模和过程中的流变测量。因此,该研究将阐明1)目前未知的结构影响的一维纳米填料对复合纤维的热拉伸加工过程中的限速故障机制,和2)广泛观察到的,但无法解释的热拉伸工艺效果的纳米填料在生产的复合纺织纤维的排列和分散。对失效、排列和分散机制的更好理解将为生产超级电容器型储能纺织品提供一种新的解决方案,并使使用热拉伸从预成型件连续制造新的功能材料和设备成为可能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?
  • DOI:
    10.3390/mi14061249
  • 发表时间:
    2023-06-14
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
Molecular insights into the electric double-layer structure at a polymer electrolyte-electrode interface
  • DOI:
    10.1016/j.electacta.2023.142131
  • 发表时间:
    2023-03-04
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Asha, Aysha Siddika;Iroegbu, Justice Nkemakolam;Shen, Caiwei
  • 通讯作者:
    Shen, Caiwei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caiwei Shen其他文献

High Mass-Loading and Mechanical Strength Supercapacitor by Graphene/Carbon Fiber Composites
石墨烯/碳纤维复合材料的高质量负载和机械强度超级电容器
Tough, flexible, and durable all-polyampholyte hydrogel supercapacitor
坚韧、灵活且耐用的全聚两性电解质水凝胶超级电容器
  • DOI:
    10.1016/j.polymertesting.2022.107720
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Xuefeng Li;Yonglin Wang;Dapeng Li;Caiwei Shen;Mengfan Chen;Shijun Long;Yiwan Huang
  • 通讯作者:
    Yiwan Huang
A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies
采用微加工技术的不对称MnO2-碳结构的高能量密度微型超级电容器
  • DOI:
    10.1016/j.jpowsour.2012.10.101
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Caiwei Shen;Xiaohong Wang;Siwei Li;Jian'gan Wang;Wenfeng Zhang;Feiyu Kang
  • 通讯作者:
    Feiyu Kang
Solid-state flexible micro supercapacitors by direct-write porous nanofibers
直写多孔纳米纤维固态柔性微型超级电容器
Direct-write polymeric strain sensors with arbitary contours on flexible substrates
在柔性基板上具有任意轮廓的直写聚合物应变传感器

Caiwei Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312707
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Drawing of Composite Fibers for Wearable Energy Storage Textiles
合作研究:可穿戴储能纺织品复合纤维的热拉伸
  • 批准号:
    2330670
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Studying Carbon Injection and the Silicate Weathering Feedback over the Paleocene Eocene Thermal Maximum Using Ca Isotopes and Modeling
合作研究:利用 Ca 同位素和模拟研究古新世始新世热最大值期间的碳注入和硅酸盐风化反馈
  • 批准号:
    2233961
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234705
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234706
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
  • 批准号:
    2329109
  • 财政年份:
    2023
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了