Trustworthy Reinforcement Learning for Online Decision Making
用于在线决策的值得信赖的强化学习
基本信息
- 批准号:2217440
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will advance the frontiers of modern reinforcement learning for online decision-making problems. Reinforcement learning deals with how intelligent agents ought to take actions in an uncertain environment in order to maximize the cumulative reward. It has achieved phenomenal success in diverse business and scientific fields. However, less attention has been paid to the trustworthy aspects of reinforcement learning. This project will investigate different aspects of trustworthy issues like robustness, fairness, causality, and explainability in important online decision-making tasks. The results of this research will benefit many different fields such as statistics, machine learning, operations research, marketing, economics, and finance. Open-source software will be developed to provide applied researchers with cutting-edge tools. The project will recruit students, especially those from unrepresented groups, to be involved in the research and will develop new courses on statistical reinforcement learning and decision making.This research project will focus on three interconnected trustworthy reinforcement learning methods for online decision-making problems: dynamic pricing, dynamic assortment selection, and matching in two-sided markets. Issues of robustness, fairness, causality, and explainability will be addressed in these decision-making tasks, which will advance the exploration techniques used in existing reinforcement learning algorithms. The project will develop new theoretical tools to analyze the statistical properties of these modern reinforcement learning algorithms. Regret upper bounds and matching lower bound will be thoroughly investigated. One important goal of online decision making is to identify an optimal policy that maximizes the overall gain, based on the contextual information and historical interactions with the environment. Due to the complex nature of such problems, there is a high demand for trustworthy tools for learning optimal personalized policy in various settings. The knowledge gained from this research will benefit learning in online auctions and other complex market design problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将推进现代强化学习在线决策问题的前沿。强化学习涉及智能体如何在不确定的环境中采取行动,以最大化累积奖励。它在不同的商业和科学领域取得了惊人的成功。然而,人们对强化学习的可信方面关注较少。该项目将研究重要在线决策任务中可信问题的不同方面,例如稳健性、公平性、因果关系和可解释性。这项研究的成果将惠及统计学、机器学习、运筹学、营销、经济学和金融等许多不同领域。将开发开源软件,为应用研究人员提供尖端工具。该项目将招募学生,特别是来自无代表性群体的学生参与研究,并将开发有关统计强化学习和决策的新课程。该研究项目将重点研究在线决策问题的三种相互关联的可信强化学习方法:动态定价、动态品种选择和双边市场匹配。这些决策任务将解决鲁棒性、公平性、因果性和可解释性问题,这将推进现有强化学习算法中使用的探索技术。该项目将开发新的理论工具来分析这些现代强化学习算法的统计特性。遗憾上限和匹配下限将被彻底调查。在线决策的一个重要目标是根据上下文信息和与环境的历史交互来确定最大化总体收益的最佳策略。由于此类问题的复杂性,对于在各种环境下学习最佳个性化策略的值得信赖的工具有很高的需求。从这项研究中获得的知识将有利于学习在线拍卖和其他复杂的市场设计问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distribution-free Contextual Dynamic Pricing
- DOI:10.1287/moor.2023.1369
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yiyun Luo;W. Sun;Yufeng Liu
- 通讯作者:Yiyun Luo;W. Sun;Yufeng Liu
Estimation of Linear Functionals in High Dimensional Linear Models: From Sparsity to Non-sparsity
高维线性模型中线性泛函的估计:从稀疏到非稀疏
- DOI:10.1080/01621459.2023.2206084
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Zhao, Junlong;Zhou, Yang;Liu, Yufeng
- 通讯作者:Liu, Yufeng
Contextual Dynamic Pricing with Unknown Noise: Explore-then-UCB Strategy and Improved Regrets
未知噪声下的上下文动态定价:探索然后 UCB 策略和改进遗憾
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yiyun Luo, Will Wei
- 通讯作者:Yiyun Luo, Will Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Sun其他文献
Optimized prime editing efficiently generates heritable mutations in maize
优化的引物编辑有效地在玉米中产生可遗传的突变
- DOI:
10.1111/jipb.13428 - 发表时间:
- 期刊:
- 影响因子:11.4
- 作者:
Dexin Qiao;Junya Wang;Min‐Hui Lu;Cuiping Xin;Yiping Chai;Yuanyuan Jiang;Wei Sun;Zhenghong Cao;Siyi Guo;Xue‐Chen Wang;Qi‐Jun Chen - 通讯作者:
Qi‐Jun Chen
Inter-Firm Connections, Alliance Formation and the Value Created by Alliances
企业间的联系、联盟的形成以及联盟创造的价值
- DOI:
10.2139/ssrn.3568815 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yun Liu;T. Mantecón;S. Silveri;Wei Sun - 通讯作者:
Wei Sun
Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems with Full-State Constraints
全状态约束严格反馈非线性时滞系统的自适应模糊控制
- DOI:
10.1007/s40815-018-0545-9 - 发表时间:
2018-09 - 期刊:
- 影响因子:4.3
- 作者:
Wei Sun;Wenxing Yuan;Yu Shao;Zong-Yao Sun;Junsheng Zhao;Qun Sun - 通讯作者:
Qun Sun
Research on Exergy Flow Composition and Exergy Loss Mechanisms for Waxy Crude Oil Pipeline Transport Processes
含蜡原油管道输送过程火用流量组成及火用损失机理研究
- DOI:
10.3390/en10121956 - 发表时间:
2017-11 - 期刊:
- 影响因子:3.2
- 作者:
Qinglin Cheng;Yifan Gan;Wenkun Su;Yang Liu;Wei Sun;Ying Xu - 通讯作者:
Ying Xu
Anatomy of the rho resonance from lattice QCD at the physical point
物理点晶格 QCD 的 rho 共振解剖
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wei Sun;Andrei Alex;ru;Ying Chen;Terrence Draper;Zhaofeng Liu;Yi-Bo Yang - 通讯作者:
Yi-Bo Yang
Wei Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Sun', 18)}}的其他基金
IMPULSE - Advanced Industrial Manufacture of Next-Generation MARBN Steel for Cleaner Fossil Plant
IMPULSE - 用于清洁化石燃料工厂的下一代 MARBN 钢的先进工业制造
- 批准号:
EP/N509991/1 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid
合作研究:自愈智能电网的智能恢复系统
- 批准号:
1552073 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Integrating Inkjet Printing with Nanoporous Structures for High-throughput Manufacturing of 3D Heterogeneous Nanostructures
将喷墨打印与纳米多孔结构相结合,实现 3D 异质纳米结构的高通量制造
- 批准号:
1401438 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid
合作研究:自愈智能电网的智能恢复系统
- 批准号:
1408486 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Workshop: Grand Challenges for Bio-Nano Integrated Manufacturing - A Bi-lateral Workshop between US and China; Tsinghua University, Beijing, China; April 11-13, 2011
研讨会:生物纳米集成制造的巨大挑战——中美双边研讨会;
- 批准号:
1118559 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
A Dual Functional Freeform Microplasma Surface Patterning and Biologics Printing
双功能自由形态微等离子体表面图案化和生物制品印刷
- 批准号:
1030520 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Workshop/Collaborative Research: Grand Challenges for Bio-Nano Integrated Manufacturing for Year 2020; October 3-5, 2007; Arlington, Virginia
研讨会/合作研究:2020年生物纳米集成制造的巨大挑战;
- 批准号:
0738376 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Study Bio-Deposition Induced Effect on Living Cells
研究生物沉积对活细胞的影响
- 批准号:
0700405 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Workshop on Bio-Nano Manufacturing for Cellular Engineering; March, 2007; NIST, Gaithersburg, Maryland
细胞工程生物纳米制造合作研讨会;
- 批准号:
0650093 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Workshop: International Workshop for Biomanufacturing, Tsinghua University; Beijing, China; June 29 - July 1, 2005
研讨会:清华大学生物制造国际研讨会;
- 批准号:
0520958 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
海桑属杂种区强化(Reinforcement)的检验与遗传基础研究
- 批准号:30800060
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
- 批准号:
2339794 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
- 批准号:
2339395 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
- 批准号:
24K14927 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant














{{item.name}}会员




