Developing Random Field based novel approaches for spatial transcriptomics
开发基于随机场的空间转录组学新方法
基本信息
- 批准号:2217515
- 负责人:
- 金额:$ 70.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The overall goal of the project is to develop Random Field based approaches to spatially analyze and understand tissue architecture and heterogeneity as well as the communication between different cells and stromal components. The knowledge will gain insights into the potential molecular mechanism related to cell evolution, tissue development, disease progression, and drug resistance. The developed tools will significantly improve our understanding of tissue heterogeneity and development. The characterization and use of subclones and spatial architecture for function analysis will provide a completely different approach to study tissue heterogeneity. Graduate and undergraduate students will work under this project and gain experience in leading-edge research. An undergraduate summer research program on "Computational Systems Biology” will be organized. Systematic analysis methods used to analyze spatial transcriptome data are still in their infancy. Current analysis methods of spatial transcriptome data focus on transcriptional profiling. Novel methods are needed to identify genomic variants and integrate genetic and transcriptional variations. To address the challenges, a hybrid model based on Variational Graph AutoEncoder (VGAE) will be developed to characterize the spatial relationship between the spots and subclones. Hidden Markov Models (HMM) will be used to infer the copy number variations (CNVs) from spatial transcriptomic data. The new approach of identifying subclone and CNVs from spatial transcriptomics through VGAE and HMM is coined as CVAM. A Random Field based computational toolset called SPAT (spatial architectural analysis) is proposed to study the architectural heterogeneity with spatial transcriptomics and scRNA-seq data. SPAT can identify single gene-based spatial biomarkers, analyze spatial distribution patterns of signaling networks, and explore cell-cell interaction using spatial transcriptomics and scRNA-seq data. Specifically, a Gromov-Wasserstein distance and Random Field-based approach will be designed to characterize signaling between adjacent cells and stromal cells. Finally the new computational tools and results will be validated through biological experiments. Software prototypes and the variants and gene biomarkers with spatial patterns will be made publicly available to the research community via a project website at https:/ccsm.uth.edu/NSFSPA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的总体目标是开发基于随机场的方法,以空间分析和理解组织结构和异质性以及不同细胞和基质成分之间的通信。这些知识将深入了解与细胞进化,组织发育,疾病进展和耐药性相关的潜在分子机制。所开发的工具将显着提高我们的组织异质性和发展的理解。亚克隆和空间结构的功能分析的表征和使用将提供一个完全不同的方法来研究组织异质性。研究生和本科生将在这个项目下工作,并获得前沿研究的经验。将组织一个关于“计算系统生物学”的本科生暑期研究项目。用于分析空间转录组数据的系统分析方法仍处于起步阶段。目前空间转录组数据的分析方法主要集中在转录谱分析上。需要新的方法来鉴定基因组变异并整合遗传和转录变异。为了应对这些挑战,将开发基于变分图自动编码器(VGAE)的混合模型来表征斑点和亚克隆之间的空间关系。隐马尔可夫模型(HMM)将用于从空间转录组数据推断拷贝数变异(CNV)。通过VGAE和HMM从空间转录组学中识别亚克隆和CNVs的新方法被称为CVAM。提出了一种基于随机场的计算工具集SPAT(spatial architectural analysis),用于研究空间转录组学和scRNA-seq数据的结构异质性。SPAT可以识别基于单个基因的空间生物标志物,分析信号网络的空间分布模式,并使用空间转录组学和scRNA-seq数据探索细胞间的相互作用。具体而言,将设计Gromov-Wasserstein距离和基于随机场的方法来表征相邻细胞和基质细胞之间的信号传导。最后,新的计算工具和结果将通过生物实验进行验证。软件原型和变体以及具有空间模式的基因生物标志物将通过项目网站https:/ www.example.com向研究界公开提供ccsm.uth.edu/NSFSPA.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobo Zhou其他文献
Enhanced statistics-based rate adaptation for 802.11 wireless networks
增强型 802.11 无线网络基于统计的速率自适应
- DOI:
10.1016/j.jnca.2011.06.002 - 发表时间:
2011 - 期刊:
- 影响因子:8.7
- 作者:
Liqiang Zhang;Yu;Xiaobo Zhou - 通讯作者:
Xiaobo Zhou
Biomarker Discovery from Proteomics
从蛋白质组学中发现生物标志物
- DOI:
10.1142/9789812790743_0014 - 发表时间:
2008 - 期刊:
- 影响因子:3.4
- 作者:
Xiaobo Zhou;Stephen T. C. Wong - 通讯作者:
Stephen T. C. Wong
Bayesian peak detection for Pro-TOF MS MALDI data
Pro-TOF MS MALDI 数据的贝叶斯峰值检测
- DOI:
10.1109/icassp.2008.4517696 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jianqiu Zhang;Honghui Wang;A. Suffredini;Denise Gonzales;Elias Gonzalez;Yufei Huang;Xiaobo Zhou - 通讯作者:
Xiaobo Zhou
Molecular Orientation of Polymer Acceptor Dominates Open-Circuit Voltage Losses in All-Polymer Solar Cells
聚合物受体的分子取向决定全聚合物太阳能电池的开路电压损耗
- DOI:
10.1021/acsenergylett.9b00416 - 发表时间:
2019 - 期刊:
- 影响因子:22
- 作者:
Ke Zhou;Yang Wu;Yanfeng Liu;Xiaobo Zhou;Lin Zhang;Wei Ma - 通讯作者:
Wei Ma
A Comparative Study of Human Motion Capture and Computational Analysis Tools
人体动作捕捉与计算分析工具的比较研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Seung;Xiaobo Zhou;Dan K Ramsey;V. Krovi - 通讯作者:
V. Krovi
Xiaobo Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobo Zhou', 18)}}的其他基金
Developing novel machine learning approaches to studying cell development
开发新的机器学习方法来研究细胞发育
- 批准号:
2326879 - 财政年份:2023
- 资助金额:
$ 70.46万 - 项目类别:
Continuing Grant
SHF: Small: Lightweight Virtualization Driven Elastic Memory Management and Cluster Scheduling
SHF:小型:轻量级虚拟化驱动的弹性内存管理和集群调度
- 批准号:
1816850 - 财政年份:2018
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant
CSR: Small: Moving MapReduce into the Cloud: Flexibility, Efficiency, and Elasticity
CSR:小:将 MapReduce 移至云端:灵活性、效率和弹性
- 批准号:
1422119 - 财政年份:2014
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant
NSF Travel Grant Support for IEEE ICCCN 2012 Conference
NSF 为 IEEE ICCCN 2012 会议提供差旅补助支持
- 批准号:
1238494 - 财政年份:2012
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant
CSR: Small: Autonomous Performance and Power Control on Virtualized Servers
CSR:小型:虚拟化服务器上的自主性能和电源控制
- 批准号:
1217979 - 财政年份:2012
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant
CAREER: Building Resilient Internet Services with Learning and Control
职业:通过学习和控制构建弹性互联网服务
- 批准号:
0844983 - 财政年份:2009
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant
CSR-PDOS: Resource Allocation Optimization for Quantitative Slowdown Differentiation in Multi-tier Server Clusters
CSR-PDOS:多层服务器集群中定量减速差异化的资源分配优化
- 批准号:
0720524 - 财政年份:2007
- 资助金额:
$ 70.46万 - 项目类别:
Continuing Grant
相似海外基金
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
- 批准号:
EP/X026116/1 - 财政年份:2024
- 资助金额:
$ 70.46万 - 项目类别:
Research Grant
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 70.46万 - 项目类别:
Modelling Human Genomic Variations Using Markov Random Field: A Feasibility Study
使用马尔可夫随机场模拟人类基因组变异:可行性研究
- 批准号:
EP/W016109/1 - 财政年份:2022
- 资助金额:
$ 70.46万 - 项目类别:
Research Grant
Random Field Modelling of genetic and epigenetic association underlying congenital heart defects in the presence of disease heterogeneity
存在疾病异质性的情况下先天性心脏缺陷的遗传和表观遗传关联的随机场建模
- 批准号:
10405321 - 财政年份:2021
- 资助金额:
$ 70.46万 - 项目类别:
Advanced random field models and practical Bayesian estimation
先进的随机场模型和实用的贝叶斯估计
- 批准号:
2617239 - 财政年份:2021
- 资助金额:
$ 70.46万 - 项目类别:
Studentship
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
$ 70.46万 - 项目类别:
Continuing Grant
Mean-field theory for random geometric graph and its application to mathematical models
随机几何图的平均场理论及其在数学模型中的应用
- 批准号:
19K14613 - 财政年份:2019
- 资助金额:
$ 70.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Random Field Modelling of Genetic and Epigenetic Association for Congenital Heart Defects in the Presence of Disease Heterogeneity
存在疾病异质性时先天性心脏缺陷的遗传和表观遗传关联的随机场建模
- 批准号:
10078546 - 财政年份:2018
- 资助金额:
$ 70.46万 - 项目类别:
Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods
使用广义随机场似然提高空间扩展问题中的粒子滤波器性能
- 批准号:
1821074 - 财政年份:2018
- 资助金额:
$ 70.46万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2--Derivation of Ensemble and Joint-Variable Climate Field Reconstructions of the Common Era Using New Random Field Methods
合作研究:P2C2--利用新的随机场方法进行集合推导和共同时代的联合变量气候场重建
- 批准号:
1602845 - 财政年份:2016
- 资助金额:
$ 70.46万 - 项目类别:
Standard Grant