Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms

合作研究:AF:小型:高效大规模并行算法

基本信息

  • 批准号:
    2218677
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Modern computing systems have moved beyond single-coresingle-processor devices to more modern multicore processors operatingin networked systems and available in warehouse-scale cloudspopularized by companies such as Amazon or Google. Future advances incomputing power will likely come not mainly from faster devices, butby processing in inherently parallel and distributed environments, andby understanding how to exploit the parallelism inherent in manyalgorithmic problems. Simultaneously, the world has entered the era of``big data'' with large data sets on which previously unthinkablesized problems with great economic and social impact need to besolved. This new parallel, interconnected, big-data world speciallyrequires fundamental research on their algorithms, which are bothparallel and distributed.The algorithms in this project address thisimportant research challenge by building and developing new generalframeworks for massively parallel computation.As the main thrust of this project, the investigators will designfundamental and efficient algorithms for core massively parallelcomputations especially in the practical Massively ParallelComputation (MPC) framework. In particular, they will consider methodsfor reducing the number of rounds in the MPC model as well astradeoffs between rounds, memory, number of machines, andcommunication time. They seek to find new MPC algorithms for basicgraph problems such as connectivity, matching, vertex cover, maximalindependent set, as well as other basic string matching problems suchas suffix trees, edit distance, and longest commonsubsequence. Another focus is dynamic algorithms for massivelyparallel computation, which modify the output efficiently in aparallel/distributed setting based on frequent modifications of theinput and with direct applications in evolving social networks, theWorld Wide Web, road networks, scheduling systems among others. Theinvestigators will augmenting current parallelenvironments/architectures with better data structures andabstractions to allow simplified and fast implementations of thecurrent fundamental algorithms that can be used in practicevia open-source codes. The discoveries in this project will beintegrated into existing and new courses and books about parallelalgorithms, distributed algorithms, and foundations of big data. Thewealth of attractive open problems in these areas will provide bothchallenging research topics and intuitive accessible problems toinspire students to enter research in computer science andmathematics. In particular the project will involve Ph.D. students andpost-docs, undergraduate students, and even high-school students(especially students among minorities and women), many of whom willcontinue their research at other academic institutions and researchcenters, further broadening the impact of this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算系统已经从单核单处理器设备发展到更现代的多核处理器,这些处理器在网络系统中运行,并可在亚马逊或谷歌等公司推出的仓库级云计算中使用。未来计算能力的进步可能主要不是来自更快的设备,而是来自于在固有的并行和分布式环境中进行处理,以及理解如何利用许多算法问题中固有的并行性。与此同时,世界已进入"大数据“时代,需要利用大数据集解决以前无法想象的具有重大经济和社会影响的问题。这个新的并行,互联,大数据的世界特别需要对他们的算法进行基础研究,这是并行和分布式的。这个项目中的算法通过构建和开发新的大规模并行计算的通用框架来解决这个重要的研究挑战。作为这个项目的主要目标,研究人员将为核心的大规模并行计算设计基本的和有效的算法,特别是在实际的大规模并行计算中。MPC框架。特别是,他们将考虑减少MPC模型中的轮数的方法,以及轮之间的权衡,内存,机器数量和通信时间。他们试图找到新的MPC算法的basicgraph问题,如连通性,匹配,顶点覆盖,maximalindependent集,以及其他基本字符串匹配问题suchas后缀树,编辑距离,最长commonsubsequence。另一个焦点是用于并行计算的动态算法,该算法基于频繁修改输入在并行/分布式设置中有效地修改输出,并且直接应用于不断发展的社交网络、万维网、道路网络、调度系统等。研究人员将用更好的数据结构和抽象来增强当前的并行环境/架构,以允许通过开源代码简化和快速实现当前的基本算法。 该项目中的发现将整合到有关并行算法、分布式算法和大数据基础的现有和新课程和书籍中。 在这些领域的有吸引力的开放性问题的财富将提供既具有挑战性的研究课题和直观的可访问的问题,以激励学生进入计算机科学和数学的研究。特别是,该项目将涉及博士。学生和博士后,本科生,甚至高中生(特别是少数民族和女性学生),他们中的许多人将继续在其他学术机构和研究中心进行研究,进一步扩大这项研究的影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scheduling with Speed Predictions
通过速度预测进行调度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Stein其他文献

Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Energy-Efficient Scheduling with Predictions
带预测的节能调度
Internal Closedness and von Neumann-Morgenstern Stability in Matching Theory: Structures and Complexity
匹配理论中的内部封闭性和冯·诺依曼-摩根斯坦稳定性:结构和复杂性
  • DOI:
    10.48550/arxiv.2211.17050
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuri Faenza;Clifford Stein;Jia Wan
  • 通讯作者:
    Jia Wan
A parallel algorithm for approximating the minimum cycle cover
  • DOI:
    10.1007/bf01185336
  • 发表时间:
    1993-01-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Philip Klein;Clifford Stein
  • 通讯作者:
    Clifford Stein

Clifford Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Stein', 18)}}的其他基金

Symposium on Discrete Algorithms Science (SODA) 2019 Travel Grant
离散算法科学研讨会(SODA)2019年旅费资助
  • 批准号:
    1906903
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symposium on Discrete Algorithms Science (SODA) 2018 Travel Grant
离散算法科学研讨会 (SODA) 2018 年旅费资助
  • 批准号:
    1807311
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Moving Towards Secure and Massive Parallel Computing
SPX:协作研究:迈向安全和大规模并行计算
  • 批准号:
    1822809
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF:Small:Beyond Worst Case Running time: Algorithms for Routing, Scheduling and Matching
AF:小:超越最坏情况运行时间:路由、调度和匹配算法
  • 批准号:
    1714818
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2016 Travel Grant
SODA 2016 旅行补助金
  • 批准号:
    1564184
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2017 Travel Grant
SODA 2017 旅行补助金
  • 批准号:
    1701346
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2015 Travel Grant
SODA 2015 旅行补助金
  • 批准号:
    1455620
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF:Small:Scheduling and Routing: Algorithms with novel cost measures
AF:Small:调度和路由:具有新颖成本度量的算法
  • 批准号:
    1421161
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: EAGER: Scheduling with Resource Contraints
AF:EAGER:具有资源约束的调度
  • 批准号:
    1349602
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2014 Travel Grant
SODA 2014 旅行补助金
  • 批准号:
    1348439
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了