Symposium on Discrete Algorithms Science (SODA) 2019 Travel Grant
离散算法科学研讨会(SODA)2019年旅费资助
基本信息
- 批准号:1906903
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support student and postdoctoral attendance at the Annual ACM/SIAM Symposium on Discrete Algorithms Science (SODA) 2019, in San Diego, CA on January 6 to 9, 2019. SODA is co-sponsored by the Association for Computing Machinery (ACM) and the Society for Industrial and Applied Mathematics (SIAM). SODA is the premier annual research conference in the field of discrete algorithms and one of the three premier conferences in theoretical computer science. SODA has been meeting annually since 1990 and in a typical year has approximately 4000 attendees. It is co-located with three smaller workshops, ALENEX (Meeting on Algorithm Engineering and Experimentation), ANALCO (Meeting on Analysis of Algorithms), and SOSA (Symposium on Simplicity in Algorithms). SODA is attended by researchers all over the world. The field of algorithms is a vibrant one, with high participation rates from young researchers, and many papers with student authors. For these student authors and student attendees, the conference serves as a valuable educational experience, both for the technical content of the talks and for the opportunities for networking that it provides.The award will provide partial support to approximately thirty students, partly defraying the cost of travel and lodging. Efforts will be made to support students from under represented groupsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将于2019年1月6日至9日在加利福尼亚州圣地亚哥举行的2019年离散算法科学(SODA)年度ACM/SIAM年度研讨会上的学生和博士后出勤。SODA由计算机机械协会(ACM)和工业和应用数学协会(ACM)共同赞助。 SODA是离散算法领域的主要年度研究会议,也是理论计算机科学的三个主要会议之一。自1990年以来,苏打水每年一次开会,典型的一年有大约4000名与会者。 它与三个较小的研讨会(Alenex(Alenex)(算法工程和实验开会),肛门科(算法分析)和SOSA(算法中的简单性研讨会)共同分居。 全世界的研究人员都参加了苏打水。 算法领域是一个充满活力的领域,年轻研究人员的参与率很高,许多论文与学生作者。对于这些学生作家和学生的与会者,会议是一种宝贵的教育经验,无论是谈判的技术内容和它提供的网络机会。 将努力支持来自代表团体的学生,这反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifford Stein其他文献
An <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mrow><mn>5</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi mathvariant="normal">log</mi><mi>n</mi><mo stretchy="false">)</mo></math> algorithm for the Rectilinear Minimum Link-Distance Problem in three dimensions
- DOI:
10.1016/j.comgeo.2008.04.006 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
David P. Wagner;Robert Scot Drysdale;Clifford Stein - 通讯作者:
Clifford Stein
Internal Closedness and von Neumann-Morgenstern Stability in Matching Theory: Structures and Complexity
匹配理论中的内部封闭性和冯·诺依曼-摩根斯坦稳定性:结构和复杂性
- DOI:
10.48550/arxiv.2211.17050 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuri Faenza;Clifford Stein;Jia Wan - 通讯作者:
Jia Wan
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Energy-Efficient Scheduling with Predictions
带预测的节能调度
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eric Balkanski;Noémie Périvier;Clifford Stein;Hao - 通讯作者:
Hao
Cluster Before You Hallucinate: Node-Capacitated Network Design and Energy Efficient Routing
在你产生幻觉之前集群:节点容量网络设计和节能路由
- DOI:
10.1137/20m1360645 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ravishankar Krishnaswamy;Viswanath Nagarajan;K. Pruhs;Clifford Stein - 通讯作者:
Clifford Stein
Clifford Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifford Stein', 18)}}的其他基金
Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms
合作研究:AF:小型:高效大规模并行算法
- 批准号:
2218677 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Symposium on Discrete Algorithms Science (SODA) 2018 Travel Grant
离散算法科学研讨会 (SODA) 2018 年旅费资助
- 批准号:
1807311 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Moving Towards Secure and Massive Parallel Computing
SPX:协作研究:迈向安全和大规模并行计算
- 批准号:
1822809 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
AF:Small:Beyond Worst Case Running time: Algorithms for Routing, Scheduling and Matching
AF:小:超越最坏情况运行时间:路由、调度和匹配算法
- 批准号:
1714818 - 财政年份:2017
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
AF:Small:Scheduling and Routing: Algorithms with novel cost measures
AF:Small:调度和路由:具有新颖成本度量的算法
- 批准号:
1421161 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
AF: EAGER: Scheduling with Resource Contraints
AF:EAGER:具有资源约束的调度
- 批准号:
1349602 - 财政年份:2013
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似国自然基金
基于离散元-离散裂纹网络模型的点火反应演化数值模拟算法及应用
- 批准号:12302452
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于代理模型的离散连续混合的仿真优化算法研究
- 批准号:72371156
- 批准年份:2023
- 资助金额:39.00 万元
- 项目类别:面上项目
任意形态颗粒离散元的破碎模型及与多体结构耦合算法研究
- 批准号:12302512
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非定常金兹堡-朗道方程的时间高阶全离散算法
- 批准号:12301523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类偏微分方程大规模离散系统的特征驱动的多水平算法及其新型解法器研究
- 批准号:12371373
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Symposium on Discrete Algorithms Science (SODA) 2018 Travel Grant
离散算法科学研讨会 (SODA) 2018 年旅费资助
- 批准号:
1807311 - 财政年份:2018
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Discrete Frequency Infrared Spectroscopic Imaging for Breast Histopathology
用于乳腺组织病理学的离散频率红外光谱成像
- 批准号:
8761166 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Discrete Frequency Infrared Spectroscopic Imaging for Breast Histopathology
用于乳腺组织病理学的离散频率红外光谱成像
- 批准号:
8889676 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Discrete Frequency Infrared Spectroscopic Imaging for Breast Histopathology
用于乳腺组织病理学的离散频率红外光谱成像
- 批准号:
9110717 - 财政年份:2010
- 资助金额:
$ 1.5万 - 项目类别:
Boston-Area Research Training Program in Biomedical Informatics
波士顿地区生物医学信息学研究培训计划
- 批准号:
7214362 - 财政年份:1992
- 资助金额:
$ 1.5万 - 项目类别: