AF:Small:Scheduling and Routing: Algorithms with novel cost measures

AF:Small:调度和路由:具有新颖成本度量的算法

基本信息

  • 批准号:
    1421161
  • 负责人:
  • 金额:
    $ 41.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Computers, computer systems and the computational infrastructure provided by the internet are now essential for many aspects of modern life.  It is well-known and well-documented that, even as computing power and network bandwidth increase at a rapid rate, users and applications increase their demand for computation and their use of networks at roughly the same pace.  Thus, no matter how much progress is made on the hardware and network ends, efficient algorithms to manage these resources are essential. These efficient algorithms will lead to tremendous savings in both time and money and will have a positive environmental impact. They will also contribute to the decisions that are being made presently about the next generation of the internet, in particular in the design of routing protocols and the management of data centers.It is now well-understood that time and space are not the only resources that need to be carefully managed.  For the past few decades, there has been a growing emphasis on other concerns such as accuracy of solution, availability of information, use of cache, management of disk, etc.  More recently, there has been a growing understanding that energy and power management are also resources that should be carefully managed.  In this project, the PI will study several algorithmic problems that arise in applications such as computer systems and networks.  For each of these, the PI will focus on algorithms for better managing the technologies, and that have objectives that go beyond time or solution quality.  In particular, the project will study energy consumption in both computers and networks, and we will also consider environments in which other resources must be managed, such as minimizing the number of changes to a solution over time. The problem areas studied include power management in routing, power management in scheduling, extending speed scaling to other domains, and online problems with a reassignment cost. The PI will design efficient solutions to important practical problems, and the research will have broader impact.
计算机、计算机系统和由互联网提供的计算基础设施现在对于现代生活的许多方面是必不可少的。众所周知并且有充分的证据证明,即使计算能力和网络带宽以快速的速率增加,用户和应用也以大致相同的速度增加他们对计算的需求和他们对网络的使用。因此,无论在硬件和网络端取得了多大的进步,管理这些资源的有效算法都是必不可少的。这些高效的算法将节省大量的时间和金钱,并对环境产生积极的影响。他们也将有助于目前正在制定的关于下一代互联网的决策,特别是在路由协议的设计和数据中心的管理方面。现在人们已经很好地理解,时间和空间并不是唯一需要仔细管理的资源。在过去的几十年里,人们越来越强调其他问题,如解决方案的准确性,信息的可用性,高速缓存的使用,磁盘的管理等。最近,人们越来越认识到能源和电源管理也是应该仔细管理的资源。在这个项目中,PI将研究在计算机系统和网络等应用中出现的几个算法问题。对于每一个问题,PI将集中于算法,以更好地管理技术,并有超越时间或解决方案质量的目标。2特别是,该项目将研究计算机和网络中的能源消耗,我们也将考虑其他资源必须管理的环境,如最小化随时间变化的解决方案的数量。研究的问题领域包括电源管理路由,电源管理调度,扩展速度缩放到其他领域,和在线问题的重新分配成本。PI将为重要的实际问题设计有效的解决方案,研究将产生更广泛的影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scheduling When You Don't Know the Number of Machines
当您不知道机器数量时进行调度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Stein其他文献

Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Energy-Efficient Scheduling with Predictions
带预测的节能调度
Internal Closedness and von Neumann-Morgenstern Stability in Matching Theory: Structures and Complexity
匹配理论中的内部封闭性和冯·诺依曼-摩根斯坦稳定性:结构和复杂性
  • DOI:
    10.48550/arxiv.2211.17050
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuri Faenza;Clifford Stein;Jia Wan
  • 通讯作者:
    Jia Wan
A parallel algorithm for approximating the minimum cycle cover
  • DOI:
    10.1007/bf01185336
  • 发表时间:
    1993-01-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Philip Klein;Clifford Stein
  • 通讯作者:
    Clifford Stein

Clifford Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Stein', 18)}}的其他基金

Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms
合作研究:AF:小型:高效大规模并行算法
  • 批准号:
    2218677
  • 财政年份:
    2022
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Symposium on Discrete Algorithms Science (SODA) 2019 Travel Grant
离散算法科学研讨会(SODA)2019年旅费资助
  • 批准号:
    1906903
  • 财政年份:
    2019
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Symposium on Discrete Algorithms Science (SODA) 2018 Travel Grant
离散算法科学研讨会 (SODA) 2018 年旅费资助
  • 批准号:
    1807311
  • 财政年份:
    2018
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Moving Towards Secure and Massive Parallel Computing
SPX:协作研究:迈向安全和大规模并行计算
  • 批准号:
    1822809
  • 财政年份:
    2018
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
AF:Small:Beyond Worst Case Running time: Algorithms for Routing, Scheduling and Matching
AF:小:超越最坏情况运行时间:路由、调度和匹配算法
  • 批准号:
    1714818
  • 财政年份:
    2017
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SODA 2016 Travel Grant
SODA 2016 旅行补助金
  • 批准号:
    1564184
  • 财政年份:
    2016
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SODA 2017 Travel Grant
SODA 2017 旅行补助金
  • 批准号:
    1701346
  • 财政年份:
    2016
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SODA 2015 Travel Grant
SODA 2015 旅行补助金
  • 批准号:
    1455620
  • 财政年份:
    2014
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
AF: EAGER: Scheduling with Resource Contraints
AF:EAGER:具有资源约束的调度
  • 批准号:
    1349602
  • 财政年份:
    2013
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SODA 2014 Travel Grant
SODA 2014 旅行补助金
  • 批准号:
    1348439
  • 财政年份:
    2013
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Partition-Oblivious Real-Time Hierarchical Scheduling
SaTC:核心:小型:分区无关的实时分层调度
  • 批准号:
    2302610
  • 财政年份:
    2022
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SHF: Small: Tackling Mapping and Scheduling Problems for Quantum Program Compilation
SHF:小型:解决量子程序编译的映射和调度问题
  • 批准号:
    2129872
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
CIF: Small: Self-Adaptive Optimization Algorithms with Fast Convergence via Geometry-Adapted Hyper-Parameter Scheduling
CIF:小型:通过几何自适应超参数调度实现快速收敛的自适应优化算法
  • 批准号:
    2106216
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2130125
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
NSF-AoF:CNS 核心:小型:实时无线调度和边缘缓存的强化学习:理论和算法设计
  • 批准号:
    2203239
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
  • 批准号:
    2008092
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Partition-Oblivious Real-Time Hierarchical Scheduling
SaTC:核心:小型:分区无关的实时分层调度
  • 批准号:
    1945541
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了