Flow Control under Constant Power Input

恒功率输入下的流量控制

基本信息

项目摘要

Turbulent flows are present in many natural and technological processes and are characterized by larger energy losses due to friction drag between fluid and wall than their laminar counterparts. In order to enable efficient energy usage turbulent losses need to be minimized and the corresponding flow control research is one of the major topics in fluid mechanics. Much work in this field is presently based on direct numerical simulation (DNS). In preliminary work a novel DNS method was developed which is especially suited for investigating controlled flows in respect to their energy efficiency, because the energy input per time (power) can be prescribed.Existing DNS methods realize the flow through a duct by either prescribing a fixed volume flow rate or by imposing a fixed pressure gradient. The other component is a result of the simulation such that the time averaged values for flow rate and pressure gradient are the same for both techniques. If a drag reducing flow control technique is applied to either technique, the power input (energy input per time) into the flow, which is given by the product of flow rate and pressure gradient, changes. In the first case the power input decreases (constant flow rate at reduced pressure gradient) while it increases for the second case (increased flow rate at constant pressure gradient). As a result the influence of control techniques on turbulence properties can be interpreted in different ways. Reliable statements concerning changes in the energy dissipation mechanisms are basically not possible. Furthermore, for active control techniques, the power input required to drive the control has to be considered if the total energy requirement of the controlled flow is to be evaluated.In the present project we intend to further develop the novel DNS method based on a constant power input where this power input includes both, pumping and control power. This method will be used to revisit selected existing flow control techniques and analyze those in respect to their turbulence properties, with special focus on the dissipation mechanisms. In addition, they will be evaluated in respect to their energy efficiency and in comparison with results obtained with existing DNS methods.
湍流存在于许多自然和技术过程中,其特点是流体与壁面之间的摩擦阻力比层流流体具有更大的能量损失。为了能够高效地利用能量,需要将湍流损失降到最低,相应的流动控制研究是流体力学的主要课题之一。目前,这一领域的许多工作都是基于直接数值模拟。在前期工作中,发展了一种新的动态系统方法,该方法特别适合于研究受控流动的能量效率,因为每一次(功率)的能量输入是可以规定的。现有的动态系统方法通过规定固定的体积流量或施加固定的压力梯度来实现通过管道的流动。另一个组件是模拟的结果,使得两种技术的流量和压力梯度的时间平均值相同。如果将减阻流动控制技术应用于任何一种技术,则流向流动的功率输入(每次能量输入)由流量和压力梯度的乘积提供改变。在第一种情况下,功率输入减少(降低压力梯度时的恒定流量),而在第二种情况下增加(恒定压力梯度时增加的流量)。因此,控制技术对湍流特性的影响可以用不同的方式解释。关于能量耗散机制变化的可靠声明基本上是不可能的。此外,对于主动控制技术,如果要评估受控流量的总能量需求,则必须考虑驱动控制所需的功率输入。在本项目中,我们打算进一步发展基于恒定功率输入的新型动态域名系统方法,其中该功率输入既包括泵浦功率又包括控制功率。这一方法将被用来重温选定的现有流动控制技术,并分析它们的湍流特性,特别是耗散机理。此外,还将对它们的能源效率进行评估,并与现有的域名系统方法得到的结果进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Bettina Frohnapfel其他文献

Professorin Dr.-Ing. Bettina Frohnapfel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Bettina Frohnapfel', 18)}}的其他基金

Turbulent secondary motions over walls with spanwise inhomogeneity
跨壁的湍流二次运动,具有展向不均匀性
  • 批准号:
    423710075
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
How do turbulent superstructures interact with skin friction drag?
湍流上部结构如何与表面摩擦阻力相互作用?
  • 批准号:
    316200959
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Innovative Oberflächenstrukturen zur Beeinflussung der Impulsübertragung zwischen Fluid und Feststoff
创新的表面结构影响流体和固体之间的动量传递
  • 批准号:
    157355661
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Numerical and experimental analysis of surface textures – towards a reproducible and robust design of textures in conformal contacts
表面纹理的数值和实验分析 â 实现共形接触中纹理的可重复且稳健的设计
  • 批准号:
    438122912
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Next step towards high-fidelity numerical simulations of turbulent heat transfer toliquid metals: forced and mixed convection with non-uniform wall heat flux, conjugate heat transfer and temperature dependent thermophysical properties
液态金属湍流传热高保真数值模拟的下一步:具有非均匀壁热通量的强制对流和混合对流、共轭传热和温度相关的热物理特性
  • 批准号:
    462658330
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Turbulent drag of ridge-type surface structures
脊状表面结构的湍流阻力
  • 批准号:
    521110788
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Bio-inspired flow control studies under gust and turbulence effect for next-generation Urban Air Mobility aircraft.
下一代城市空中交通飞机阵风和湍流效应下的仿生流量控制研究。
  • 批准号:
    2865033
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
  • 批准号:
    9288617
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Studies on Development of High-Efficient and Reliable Cooling Flow Control Devices under a Realistic Gas Turbine Environment
真实燃气轮机环境下高效可靠冷却流量控制装置的研制研究
  • 批准号:
    17K06138
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
  • 批准号:
    9752590
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Active Control of Nonlinear Flow-Induced Instability of Wind Turbine Blades under Stochastic Perturbations
合作研究:随机扰动下风力机叶片非线性流致失稳的主动控制
  • 批准号:
    1462646
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Active Control of Nonlinear Flow-Induced Instability of Wind Turbine Blades under Stochastic Perturbations
合作研究:随机扰动下风力机叶片非线性流致失稳的主动控制
  • 批准号:
    1462774
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aggregation/dispersion analysis of fine particles in a suspension under elongational flow for function control of polymer composites
拉伸流动下悬浮液中细颗粒的聚集/分散分析,用于聚合物复合材料的功能控制
  • 批准号:
    26820052
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fundamental study on hypersonic flow control with plasma assisted virtual aerospike under magnetic field
磁场下等离子体辅助虚拟气塞高超声速流动控制基础研究
  • 批准号:
    26889023
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Efficient numerical investigation of flow control on wind turbine rotors under realistic conditions
实际条件下风力涡轮机转子流动控制的高效数值研究
  • 批准号:
    218654480
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional micro-structure of liquid crystals generated by controlling of Bingham like properties under electric fields, and its application for flow control.
通过控制电场下宾汉姆类性质产生的液晶的功能微结构及其在流量控制中的应用。
  • 批准号:
    19560165
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了