Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys

合作研究:多主元合金表面氧化物形成的微观机制

基本信息

  • 批准号:
    2219416
  • 负责人:
  • 金额:
    $ 38.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are compositionally complex alloys consisting of five or more elements in relatively equal proportions. Certain MPEAs have demonstrated superior mechanical properties (e.g., hardness, strength) unattainable from traditional alloys, making them ideal for high temperature applications (e.g., gas turbine blades and surface coatings for reentry vehicles). Incidentally, degradation by oxidation is a critical material challenge that must still be overcome to improve performance in such applications. Due to the complex compositional combinations, making oxidation resistant MPEAs is nontrivial. In this project, composition-processing-structure-property relationships for oxidation-resistant MPEAs are established through state-of-the-art experimental characterizations and computer simulations, guided by an artificial intelligence (AI) assisted innovative data-adaptive discovery strategy. Fundamentally, the oxidation mechanism¬ from the atomic to micro-meter scale is studied through both experimental discovery and machine learning embedded within a materials design and surface engineering framework. The results of this project enable an advanced materials paradigm for the discovery and creation of oxidation resistant MPEAs applicable for high temperature operations. TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are concentrated random solid-solutions typically consisting of five or more elements in significant proportions. While the remarkable mechanical properties (e.g., hardness, or strength) of certain MPEAs have encouraged their potential use for components operating at high temperatures such as those found in gas turbine blades or surface coatings for reentry vehicles. At the operation conditions for such components, degradation by oxidation remains a critical materials challenge. Consequently, during synthesis of oxidation resistant MPEAs, the versatility in elemental compositions for these complex alloys translates to an extensive range of possible oxidation products, many with poor resistance to the penetration of oxygen into the bulk alloy. To address this challenge and explore the associated enormous composition-processing-structure-property landscape, the oxidation mechanism¬ from atomic scale oxygen chemisorption to micro-meter oxide scale formation are studied by an innovative and experimentally validated data-guided adaptive approach. A surface engineering paradigm for the synthesis and processing of MPEAs with improved oxidation resistance are being developed. Central to the proposed framework are four research developments: (1) MPEA Concept Exploration; (2) Surface Engineering & Atomic Characterization; (3) Density Functional Theory Calculations; and (4) Adaptive Discovery. The results of this research are expected to have significant economic impact on society through innovations in surface-engineered MPEAs across a wide range of industries such as energy, hypersonic applications, defense and healthcare. This timely research lies within the domains of fundamental materials physics, predictive synthesis, and data science and offers unique collaborative and interdisciplinary research and training experiences for researchers across the fields of surface physics, material science, data analytics, and computational materials. Research is integrated with education through cross-university teaching and assessment, exchange-visits and co-advised student training coupled with technology innovation and entrepreneurial experiences. In this project, PIs also actively engage with programs for pre-college women and underrepresented minority students to encourage them to pursue STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术含量和多主元素合金(MPEA)是一种成分复杂的合金,由五种或五种以上元素按相对相等的比例组成。某些MPEA具有传统合金无法获得的优异机械性能(例如,硬度、强度),因此非常适合高温应用(例如,再入飞行器的燃气轮机叶片和表面涂层)。顺便说一句,氧化降解是一项关键的材料挑战,为了提高此类应用的性能,仍必须克服这一挑战。由于组成组合复杂,制造抗氧化性MPEA并非易事。在这个项目中,通过最先进的实验表征和计算机模拟,在人工智能(AI)辅助的创新数据自适应发现策略的指导下,建立了抗氧化MPEA的组成-加工-结构-性能关系。从根本上说,从原子到微米级的氧化机制是通过嵌入材料设计和表面工程框架的实验发现和机器学习来研究的。该项目的成果为发现和创造适用于高温作业的抗氧化MPEA提供了先进的材料范例。技术综述多主元素合金(MPEA)是一种浓缩的随机固溶体,通常由五种或五种以上的元素组成,比例很大。虽然某些MPEA的卓越机械性能(如硬度或强度)鼓励其在高温下运行的部件,如燃气轮机叶片或再入飞行器表面涂层中的潜在用途。在这些部件的操作条件下,氧化降解仍然是一个关键的材料挑战。因此,在抗氧化性MPEA的合成过程中,这些复杂合金的元素组成的多样性转化为一系列可能的氧化产物,其中许多对氧渗透到大块合金中的抵抗力很差。为了应对这一挑战并探索与之相关的巨大的成分-加工-结构-性能图景,我们采用了一种创新的、经过实验验证的数据引导的自适应方法,研究了从原子级氧化学吸附到微米级氧化物层形成的氧化机制。正在开发一种表面工程范例,用于合成和加工具有更好的抗氧化性的MPEA。建议框架的核心是四个研究进展:(1)MPEA概念探索;(2)表面工程与原子表征;(3)密度泛函理论计算;(4)自适应发现。这项研究的结果预计将通过能源、高超声速应用、国防和医疗保健等广泛行业的表面工程MPEA的创新,对社会产生重大的经济影响。这项及时的研究涉及基础材料物理、预测合成和数据科学领域,并为表面物理、材料科学、数据分析和计算材料领域的研究人员提供独特的协作和跨学科研究和培训经验。通过跨大学教学和评估、互访和共同建议的学生培训以及技术创新和创业经验,研究与教育相结合。在该项目中,PIs还积极参与针对大学前女性和代表不足的少数族裔学生的计划,以鼓励她们追求STEM职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TeYu Chien其他文献

Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms
双功能 Ca2Fe2O5 催化剂通过减少松木转化焦油提高富氢气体产量:内环氧化还原反应和促进机制的研究
  • DOI:
    10.1016/j.apenergy.2017.12.087
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Zhao Sun;Shiyi Chen;Christopher K. Russell;Jun Hu;Asif H. Rony;Gang Tan;Aimin Chen;Lunbo Duan;John Boman;Jinke Tang;TeYu Chien;Maohong Fan;Wenguo Xiang
  • 通讯作者:
    Wenguo Xiang
Magnetic nanoparticle detection methods in the context of complex fluids

TeYu Chien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TeYu Chien', 18)}}的其他基金

Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662509
  • 财政年份:
    2017
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
  • 批准号:
    2219489
  • 财政年份:
    2022
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100691
  • 财政年份:
    2021
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
  • 批准号:
    2126682
  • 财政年份:
    2021
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
  • 批准号:
    2126785
  • 财政年份:
    2021
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100493
  • 财政年份:
    2021
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学​​和相关微观表征
  • 批准号:
    1900463
  • 财政年份:
    2019
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Discontinuous Shear Thickening and Shear Jamming in Dense Suspensions: Statistical Mechanics and the Microscopic Basis for Extreme Transitions of Properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切堵塞:统计力学和性能极端转变的微观基础
  • 批准号:
    1916879
  • 财政年份:
    2019
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Discontinuous shear thickening and shear jamming in dense suspensions: statistical mechanics and the microscopic basis for extreme transitions of properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切干扰:统计力学和性能极端转变的微观基础
  • 批准号:
    1916877
  • 财政年份:
    2019
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学​​和相关微观表征
  • 批准号:
    1900401
  • 财政年份:
    2019
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Standard Grant
Collaborative research: Microscopic fracturing and macroscopic weakening: A novel model for bedrock fracturing by biotite weathering
合作研究:微观破裂和宏观弱化:黑云母风化基岩破裂的新模型
  • 批准号:
    1934458
  • 财政年份:
    2019
  • 资助金额:
    $ 38.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了