Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys

合作研究:多主元合金表面氧化物形成的微观机制

基本信息

  • 批准号:
    2219489
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are compositionally complex alloys consisting of five or more elements in relatively equal proportions. Certain MPEAs have demonstrated superior mechanical properties (e.g., hardness, strength) unattainable from traditional alloys, making them ideal for high temperature applications (e.g., gas turbine blades and surface coatings for reentry vehicles). Incidentally, degradation by oxidation is a critical material challenge that must still be overcome to improve performance in such applications. Due to the complex compositional combinations, making oxidation resistant MPEAs is nontrivial. In this project, composition-processing-structure-property relationships for oxidation-resistant MPEAs are established through state-of-the-art experimental characterizations and computer simulations, guided by an artificial intelligence (AI) assisted innovative data-adaptive discovery strategy. Fundamentally, the oxidation mechanism¬ from the atomic to micro-meter scale is studied through both experimental discovery and machine learning embedded within a materials design and surface engineering framework. The results of this project enable an advanced materials paradigm for the discovery and creation of oxidation resistant MPEAs applicable for high temperature operations. TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are concentrated random solid-solutions typically consisting of five or more elements in significant proportions. While the remarkable mechanical properties (e.g., hardness, or strength) of certain MPEAs have encouraged their potential use for components operating at high temperatures such as those found in gas turbine blades or surface coatings for reentry vehicles. At the operation conditions for such components, degradation by oxidation remains a critical materials challenge. Consequently, during synthesis of oxidation resistant MPEAs, the versatility in elemental compositions for these complex alloys translates to an extensive range of possible oxidation products, many with poor resistance to the penetration of oxygen into the bulk alloy. To address this challenge and explore the associated enormous composition-processing-structure-property landscape, the oxidation mechanism¬ from atomic scale oxygen chemisorption to micro-meter oxide scale formation are studied by an innovative and experimentally validated data-guided adaptive approach. A surface engineering paradigm for the synthesis and processing of MPEAs with improved oxidation resistance are being developed. Central to the proposed framework are four research developments: (1) MPEA Concept Exploration; (2) Surface Engineering & Atomic Characterization; (3) Density Functional Theory Calculations; and (4) Adaptive Discovery. The results of this research are expected to have significant economic impact on society through innovations in surface-engineered MPEAs across a wide range of industries such as energy, hypersonic applications, defense and healthcare. This timely research lies within the domains of fundamental materials physics, predictive synthesis, and data science and offers unique collaborative and interdisciplinary research and training experiences for researchers across the fields of surface physics, material science, data analytics, and computational materials. Research is integrated with education through cross-university teaching and assessment, exchange-visits and co-advised student training coupled with technology innovation and entrepreneurial experiences. In this project, PIs also actively engage with programs for pre-college women and underrepresented minority students to encourage them to pursue STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多主元素合金(mpea)是由五种或五种以上元素以相对相等的比例组成的复杂合金。某些mpea具有传统合金无法达到的优越机械性能(例如硬度、强度),使其成为高温应用(例如燃气轮机叶片和再入飞行器表面涂层)的理想选择。顺便说一句,氧化降解是一个关键的材料挑战,必须克服,以提高在这种应用中的性能。由于mpea的成分组合复杂,制造抗氧化mpea并非易事。在本项目中,在人工智能(AI)辅助的创新数据自适应发现策略的指导下,通过最先进的实验表征和计算机模拟,建立了抗氧化mpea的成分-处理-结构-性能关系。从根本上说,从原子到微米尺度的氧化机制是通过实验发现和机器学习嵌入材料设计和表面工程框架来研究的。该项目的成果为发现和创造适用于高温作业的抗氧化mpea提供了一种先进的材料范例。技术概述多主元素合金(mpea)是一种浓缩的无规则固溶体,通常由五种或五种以上的元素组成。虽然某些mpea的显著机械性能(例如硬度或强度)鼓励了它们在高温下工作的部件的潜在应用,例如燃气轮机叶片或再入飞行器表面涂层中的部件。在这些组件的操作条件下,氧化降解仍然是一个关键的材料挑战。因此,在抗氧化mpea的合成过程中,这些复杂合金元素组成的多功能性转化为广泛的可能的氧化产物,其中许多抗氧渗透到大块合金中的能力较差。为了应对这一挑战并探索相关的巨大成分-加工-结构-性质景观,通过创新和实验验证的数据导向自适应方法研究了从原子尺度氧化学吸附到微米尺度氧化形成的氧化机制。目前正在开发一种用于合成和加工具有更好抗氧化性能的mpea的表面工程范例。提出的框架的核心是四个研究进展:(1)MPEA概念探索;(2)表面工程与原子表征;(3)密度泛函理论计算;(4)自适应发现。这项研究的结果预计将通过表面工程mpea的创新,在能源、高超音速应用、国防和医疗保健等广泛的行业对社会产生重大的经济影响。这项及时的研究属于基础材料物理,预测合成和数据科学领域,为表面物理,材料科学,数据分析和计算材料领域的研究人员提供独特的协作和跨学科研究和培训经验。通过跨大学教学和评估、交流访问、共同指导学生培训以及技术创新和创业经验,研究与教育相结合。在这个项目中,pi还积极参与针对大学预科女生和少数族裔学生的项目,鼓励她们从事STEM职业。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities
掺铌层状 FeNi 磷化物纳米片可在高电流密度下实现高效的整体水分解
  • DOI:
    10.1039/d1ta00372k
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuting Wen;Guangliang Chen;Wei Chen;Xianhui Zhang
  • 通讯作者:
    Xianhui Zhang
Research on the Complexity of Information System Development
信息系统开发复杂性研究
  • DOI:
    10.2991/meici-15.2015.208
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Wei Chen;Yan Zhang
  • 通讯作者:
    Yan Zhang
A real-time multi-constraints obstacle avoidance method based on LiDAR
一种基于LiDAR的实时多约束避障方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Chen;Jian Sun;Weishuo Li;Dapeng Zhao
  • 通讯作者:
    Dapeng Zhao
Anionic Ln–MOF with tunable emission for heavy metal ion capture and l-cysteine sensing in serum
具有可调谐发射功能的阴离子 Ln−MOF,用于血清中的重金属离子捕获和 L-半胱氨酸传感
  • DOI:
    10.1039/c9ta13932j
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Tiancheng Sun;Ruiqing Fan;Rui Xiao;Tingfeng Xing;Mingyue Qin;Yaqi Liu;Sue Hao;Wei Chen;Yulin Yang
  • 通讯作者:
    Yulin Yang
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants
巧妙引入氨基丙基咪唑来调节十二烷基键合固定相对环境有机污染物的疏水选择性
  • DOI:
    10.1016/j.microc.2022.107933
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yan Wu;Panpan Cao;Yanhao Jiang;Yanjuan Liu;Yuefei Zhang;Wei Chen;Zhengwu Bai;Sheng Tang
  • 通讯作者:
    Sheng Tang

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
  • 批准号:
    2227641
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005661
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940114
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
  • 批准号:
    1835782
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
  • 批准号:
    1807186
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662435
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
  • 批准号:
    2219416
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100691
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
  • 批准号:
    2126682
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
  • 批准号:
    2126785
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100493
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学​​和相关微观表征
  • 批准号:
    1900463
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Discontinuous Shear Thickening and Shear Jamming in Dense Suspensions: Statistical Mechanics and the Microscopic Basis for Extreme Transitions of Properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切堵塞:统计力学和性能极端转变的微观基础
  • 批准号:
    1916879
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Discontinuous shear thickening and shear jamming in dense suspensions: statistical mechanics and the microscopic basis for extreme transitions of properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切干扰:统计力学和性能极端转变的微观基础
  • 批准号:
    1916877
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学​​和相关微观表征
  • 批准号:
    1900401
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative research: Microscopic fracturing and macroscopic weakening: A novel model for bedrock fracturing by biotite weathering
合作研究:微观破裂和宏观弱化:黑云母风化基岩破裂的新模型
  • 批准号:
    1934458
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了