RAPID: #COVID-19: Understanding Community Response in the Emergence and Spread of Novel Coronavirus through Health Risk Communications in Socio-Technical Systems

迅速的:

基本信息

  • 批准号:
    2219618
  • 负责人:
  • 金额:
    $ 7.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Risk perception and risk averting behaviors of vulnerable communities in the emergence and spread of COVID-19 are spatio-temporal functions of individual or group interactions with their online social neighbors within or outside their communities and such interactions need to be captured through diverse information channels (e.g. traditional outlets such as radio, television, internet and/or non-traditional outlets such as social media). The primary goal of this Rapid Response Research (RAPID) project is to collect time-sensitive online social media and crowd-sourced data and analyze patterns of health-risk communication and community response in the emergence and spread of novel Coronavirus using data-driven methods and network science theories. The major focus will be towards understanding how individuals are socially influenced online, while communicating risk and interacting in their respective communities as the disease continues to spread. The notion of influence will be captured by quantifying the network effects on such communication behavior and characterizing how information is exchanged among people who are socially connected online and exposed to health risk in such outbreaks of disease. Given that communities responded to COVID-19 with limited or no preparation and there is uncertainty in the length of recovery for the communities already affected while new communities being threatened, the data collection effort requires rapid response for better coverage and careful monitoring. The data will include large-scale ephemeral online interactions of people in the affected communities and public officials who are involved in COVID-19 response, recovery, and mitigation efforts, followed by a data-driven network analytics and infographics of COVID-19 risk communication strategies and risk averting behaviors adopted. The proposed research will not only expand the knowledge base of spatio-temporal dynamics of risk perception and dissemination strategies in the emergence and aftermath of a major disease outbreak, but will also result in data-driven inference techniques to improve our understanding of how people express diverse concerns and how to harness and embed such information for designing intervention measures. The methodologies and findings of this rapid response research will benefit emergency management and public health agencies to define targeted information dissemination policies for public with diverse needs based on how people reacted to COVID-19 and their social network characteristics, activities, and interactions in response to similar public health hazards.Public engagement in risk communication can lead to more effective decision-making and enhanced public feedback to the regulatory process. The primary goal of this RAPID project is to mine and analyze large-scale time-sensitive perishable crowd-sourced and social media data (rich spatio-temporal data) and reveal patterns of health-risk communication and community response in the emergence and spread of novel Coronavirus using data-driven methods and network science theories. The specific aims are threefold: (1) to document how public interact and communicate health risk information through their online social networks during a major disease outbreak; (2) to authenticate data from multiple sources and detect anomalies to avoid information overload and spread of misinformation; and (3) to examine how online social networks influence protective actions (e.g., social distancing, self-quarantine decisions) i.e. information cascades in health risk communication. To achieve the goal and aims, the project will utilize ephemeral time and geo-tagged social media interactions of users, agencies, news sources supplemented with crowd-sourced information on COVID-19. This study will have five theoretical and methodological contributions to the literature. It will: (1) advance our understanding of how individuals are socially influenced online, while communicating health risks and interacting in their respective communities as the disease continues to spread; (2) inform the literature on how information is exchanged among people who are socially connected online and exposed to health risk in such outbreaks of disease; (3) use novel machine-learning and network science models to quantify influence and network effects on such communication behavior; (4) capture the variability in network composition, risk communication strategies and risk averting behaviors adopted based on spatio-temporal correlations of risk and disease contagion; (5) ensure authenticity of the collected data from multiple sources and develop more accurate fully-distributed computational algorithms tailored to health risk anomaly detection in socio-technical systems. The findings from this research will be useful to public health and emergency management agencies for tailoring effective information dissemination policies for diverse user groups based on their social network characteristics, activities, and interactions in response to similar public health hazards. The methodologies, and implications of this research can be transferred in designing effective intervention policies to other natural and man-made disaster contexts in which public health risks become major concerns. The project will engage, mentor, and offer an innovative active learning environment for K-12, undergraduate, and graduate students by giving priority to disadvantaged and underrepresented communities in USA. The project will train students on computational skills required for collecting, storing, processing, analyzing and modeling large-scale data using high performance computational resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在COVID-19的出现和传播中,脆弱社区的风险感知和风险规避行为是个人或群体与其社区内外的在线社交邻居互动的时空功能,此类互动需要通过多种信息渠道(例如广播、电视、互联网等传统渠道和/或社交媒体等非传统渠道)进行捕获。这个快速反应研究(RAPID)项目的主要目标是收集对时间敏感的在线社交媒体和众包数据,并使用数据驱动的方法和网络科学理论分析新型冠状病毒出现和传播中的健康风险沟通和社区反应模式。主要重点将是了解个人如何在网上受到社会影响,同时随着疾病的继续传播,在各自的社区中交流风险和互动。影响力的概念将通过量化网络对这种传播行为的影响,以及描述在这种疾病爆发中,在网上社交并暴露于健康风险的人之间如何交换信息来获得。鉴于社区对COVID-19的应对准备有限或根本没有准备,以及已受影响社区的恢复时间存在不确定性,而新社区受到威胁,数据收集工作需要快速反应以提高覆盖率并进行仔细监测。这些数据将包括受影响社区的人们和参与COVID-19应对、恢复和缓解工作的公职人员的大规模短暂在线互动,然后是数据驱动的网络分析和COVID-19风险沟通策略的信息图表以及所采取的风险规避行为。拟议的研究不仅将扩大在重大疾病爆发的出现和之后的风险感知和传播策略的时空动态的知识基础,而且还将导致数据驱动的推理技术,以提高我们对人们如何表达不同的关注以及如何利用和嵌入这些信息来设计干预措施的理解。这项快速反应研究的方法和结果将有助于应急管理和公共卫生机构根据人们对COVID-19的反应及其社交网络特征,活动,以及应对类似公共卫生危害的互动。公众参与风险沟通可以导致更有效的决策,加强公众对监管过程的反馈。RAPID项目的主要目标是挖掘和分析大规模时间敏感的易腐人群来源和社交媒体数据(丰富的时空数据),并使用数据驱动方法和网络科学理论揭示新型冠状病毒出现和传播中的健康风险沟通和社区反应模式。具体目标有三个:(1)记录在重大疾病爆发期间公众如何通过其在线社交网络互动和交流健康风险信息;(2)验证来自多个来源的数据并发现异常情况,以避免信息过载和错误信息的传播;(3)研究在线社交网络如何影响保护行动(例如,社交距离、自我隔离决定),即健康风险沟通中的信息级联。为了实现目标和目的,该项目将利用短暂的时间和用户、机构、新闻来源的地理标记社交媒体互动,并辅以关于COVID-19的众包信息。本研究将有五个理论和方法的文献贡献。它将:(1)促进我们对个人如何在网上受到社会影响的理解,同时随着疾病的继续传播,他们在各自的社区中交流健康风险和互动;(2)为文献提供信息,说明在这种疾病爆发中,在网上进行社会联系并暴露于健康风险的人之间如何交换信息;(3)使用新的机器学习和网络科学模型来量化对这种传播行为的影响和网络效应;(4)捕捉网络组成的可变性,基于风险与疾病传染的时空相关性,采取的风险沟通策略和风险规避行为;(5)确保从多个来源收集的数据的真实性,并开发更准确的全分布式计算算法,以检测社会技术系统中的健康风险异常。这项研究的结果将有助于公共卫生和应急管理机构根据不同用户群体的社交网络特征,活动和互动来应对类似的公共卫生危害,为他们制定有效的信息传播政策。本研究的方法和影响可以转移到设计有效的干预政策,以其他自然和人为灾害的情况下,公共卫生风险成为主要问题。该项目将通过优先考虑美国弱势和代表性不足的社区,为K-12,本科生和研究生提供创新的积极学习环境。该项目将培训学生使用高性能计算资源收集、存储、处理、分析和建模大规模数据所需的计算技能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining the Communication Pattern of Transportation and Transit Agencies on Twitter: A Longitudinal Study in the Emergence of COVID-19 on Twitter
检查 Twitter 上运输和过境机构的沟通模式:Twitter 上出现的 COVID-19 的纵向研究
COVID-19: Understanding Construction Industry Responses on Twitter in the Emergence of Novel Coronavirus
COVID-19:了解新型冠状病毒出现时建筑行业在 Twitter 上的反应
  • DOI:
    10.1061/9780784483961.015
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linge, Priyanka;Rusho, M. Ahmed;Ahmed, Md. Ashraf;Sadri, Arif Mohaimin
  • 通讯作者:
    Sadri, Arif Mohaimin
Identifying Ridesharing Risk, Response, and Challenges in the Emergence of Novel Coronavirus Using Interactions in Uber Drivers Forum
  • DOI:
    10.3389/fbuil.2021.619283
  • 发表时间:
    2021-02-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Mojumder, Md Nizamul Hoque;Ahmed, Md Ashraf;Sadri, Arif Mohaimin
  • 通讯作者:
    Sadri, Arif Mohaimin
Identifying the Spread of COVID-19 Misinformation on Twitter: Network Properties and Community Detection
识别 Twitter 上 COVID-19 错误信息的传播:网络属性和社区检测
Social Media Response and Crisis Communications in Active Shootings during COVID-19 Pandemic
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arif Mohaimin Sadri其他文献

Social Media Data Mining of Stakeholder Value Systems on Community Resilience in Florida
佛罗里达州社区复原力利益相关者价值系统的社交媒体数据挖掘
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Ren;Lu Zhang;Arif Mohaimin Sadri;N. Emel Ganapati;Travis A. Whetsell
  • 通讯作者:
    Travis A. Whetsell

Arif Mohaimin Sadri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arif Mohaimin Sadri', 18)}}的其他基金

CAREER: Risk-Sharing Communication Networks for Compound Disasters.
职业:复合灾难的风险分担通信网络。
  • 批准号:
    2339100
  • 财政年份:
    2024
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Continuing Grant
SCC-PG: Trust Formation and Risk Communication in Underserved Communities during Compound Hazard Events through Online and Offline Social Networks (TRUCHE)
SCC-PG:在复合灾害事件期间通过线上和线下社交网络在服务不足的社区建立信任和风险沟通 (TRUCHE)
  • 批准号:
    2229439
  • 财政年份:
    2022
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
I-Corps: Comprehensive tool to capture spatio-temporal variations in social media health risk communication for COVID-19 and other health risks
I-Corps:捕捉社交媒体健康风险沟通中针对 COVID-19 和其他健康风险的时空变化的综合工具
  • 批准号:
    2222940
  • 财政年份:
    2022
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
I-Corps: Comprehensive tool to capture spatio-temporal variations in social media health risk communication for COVID-19 and other health risks
I-Corps:捕捉社交媒体健康风险沟通中针对 COVID-19 和其他健康风险的时空变化的综合工具
  • 批准号:
    2050407
  • 财政年份:
    2021
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant

相似国自然基金

CEACAM5调控Galectin-9介导的CD4+T细胞极化在COVID-19肠屏障损伤的作用机制研究
  • 批准号:
    82370569
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
COVID-19疫情对我国儿童生长发育影响的异质性研究
  • 批准号:
    42371429
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
传染病模型的稳态切换过程研究及其在治疗COVID-19中的应用
  • 批准号:
    LQ23A010016
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
  • 批准号:
    82300018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
COVID-19疫情爆发后武汉地区儿童副流感病毒3型的流行趋势和进化规律研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
  • 批准号:
    82374392
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
  • 批准号:
    12301358
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
COVID-19疫苗同源、异源加强剂次细胞免疫与体液免疫效应的前瞻性队列研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于人源细胞3D培养和精密肺切片技术探讨慢阻肺患者COVID-19易感机制研究
  • 批准号:
    LY23H190003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
Rapid learning during a public health emergency: COVID-19 related medication treatment patterns in Medicare
突发公共卫生事件期间的快速学习:医疗保险中与 COVID-19 相关的药物治疗模式
  • 批准号:
    10711497
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
Quantitative Detection of Coronary Microvascular Dysfunction in Long COVID Patients using a Comprehensive, Rapid, Free-Breathing Cardiovascular MRI
使用全面、快速、自由呼吸的心血管 MRI 定量检测长期新冠肺炎患者的冠状动脉微血管功能障碍
  • 批准号:
    10671235
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
Rapid diagnosis of COVID-19 and fungal infections using Raman barcodes
使用拉曼条形码快速诊断 COVID-19 和真菌感染
  • 批准号:
    23K09359
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
  • 批准号:
    2333494
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
SBIR PA22-176 - RNA aptamers for rapid response to COVID-19 variants
SBIR PA22-176 - 用于快速响应 COVID-19 变体的 RNA 适体
  • 批准号:
    10758405
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
  • 批准号:
    10829119
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
RAPID: Collaborative Research: Providing useable COVID-19 health information to linguistically underserved people
RAPID:协作研究:为语言服务不足的人群提供可用的 COVID-19 健康信息
  • 批准号:
    2331607
  • 财政年份:
    2023
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections
RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解
  • 批准号:
    2223933
  • 财政年份:
    2022
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
RAPID: STEM faculty support to address impacts from COVID-19 on Tribal Colleges and Universities Program institutions
RAPID:STEM 教职员工支持解决 COVID-19 对部落学院和大学项目机构的影响
  • 批准号:
    2213457
  • 财政年份:
    2022
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了