Leveraging Data Science to Promote the Successful Participation of Talented, Low–Income, Undergraduate Students from Rural Alabama in STEM Fields
利用数据科学促进阿拉巴马州农村地区有才华的低收入本科生成功参与 STEM 领域
基本信息
- 批准号:2221136
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2028-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will contribute to the national need for well–educated scientists, technicians, engineers, and mathematicians by supporting the retention and graduation of high–achieving, low–income undergraduate students with demonstrated unmet financial need at Jacksonville State University, a comprehensive, regional four–year university in rural, northeast Alabama. Over a six–year duration, the project will provide scholarships to 20 selected undergraduate students each year who are pursuing bachelor’s degrees in Biology, Chemistry, Computer Science, Computer Information Sciences or Mathematics. Selected student applicants who are First Year, Sophomores, Juniors or Seniors will receive an annual scholarship to cover two semesters. At least 10, $10,000 scholarships will be awarded each year together with 10 or more $5,000 scholarships. An estimated 120 scholarships will be awarded overall. The project aims to increase student persistence in science, technology, engineering and mathematics (STEM) fields by linking scholarships with proven and effective supporting activities, including faculty advising, faculty mentoring, faculty support, faculty–guided undergraduate research experiences, graduate school preparation, travel to research universities and high–tech organizations and STEM private businesses and appropriate science–focused summer internships. Project staff, together with faculty mentors, will assist scholarship recipients in developing Individual Development Plans outlining the scholarship recipient’s career goals and progression to achieving such goals. The project will also engage in improving student retention in STEM majors and programs. By establishing a system to support scholarship recipients, the project will test new approaches to prepare and provide STEM career-ready professionals for the STEM industry. Project findings will also generate new knowledge for actionable integration to impact rural institutions targeting high–achieving, low–income undergraduate students for enrollment into NSF approved STEM majors.The project's primary outcome is that within six years, each scholarship recipient will graduate with a JSU data science minor or data science concentration and a STEM bachelor’s degree and enter the STEM workforce within an occupation of regional, statewide, or national need for STEM professionals or pursue a graduate program in STEM. The specific aim of the project is to positively address several gaps reported by STEM industry which are affecting the STEM workforce. (1) A fundamental skills gap is the ability to adapt, critically think, and conduct complex creative problem-solving. (2) The belief gap is the incorrect beliefs regarding what traits are needed to be successful in STEM. (3) The postsecondary education gap occurs because colleges are producing fewer STEM graduates than are needed in the workforce. This project is designed to address each of these gaps through the provision of scholarships and intervention services to support the STEM degree pursuits of diverse students. In addition, the project will also investigate the role of psycho-social factors and the efficacy of targeted intervention for addressing the identified critical gaps in skills and beliefs among scholarship recipients. The project will explore if positively addressing critical gaps in access, participation, skill development, and beliefs will result in scholarship recipients' successful completion of a program of study in data science and STEM, and in being fully prepared for postgraduate STEM study and/or entry into the STEM workforce. The project will advance knowledge and understanding about the effectiveness of recruiting and supporting undergraduate students with academic ability, talent, or potential, who are low–income and with a demonstrated unmet financial need to complete a data science minor or data science concentration and pursue an NSF approved STEM discipline. The project will be evaluated internally, by a project staff member with a lens on identifying generalizable knowledge, and formatively and summatively by an external evaluation team. Results of the project will be shared by the project team and external evaluation team at regional conferences, in journal articles, in local and regional newspapers, through social media, and via a project website. The project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics Program, which seeks to increase the number of low–income, academically talented students with demonstrated unmet financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low–income students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将有助于对受过良好教育的科学家,技术人员,工程师和数学家的国家需要,通过支持高成就,低收入的本科生的保留和毕业,证明在杰克逊维尔州立大学,在农村,东北亚拉巴马的综合性,区域四年制大学未满足的经济需求。在为期六年的时间里,该项目将提供奖学金给20名选定的本科生,他们正在攻读生物学,化学,计算机科学,计算机信息科学或数学学士学位。被选中的一年级,二年级,三年级或四年级的学生申请人将获得为期两个学期的年度奖学金。每年将颁发至少10个10,000美元的奖学金,以及10个或更多的5,000美元奖学金。总共将颁发120个奖学金。该项目旨在通过将奖学金与经过验证和有效的支持活动联系起来,提高学生在科学,技术,工程和数学(STEM)领域的坚持性,这些活动包括教师咨询,教师指导,教师支持,教师指导的本科研究经验,研究生院准备,前往研究型大学和高科技组织和STEM私营企业以及适当的以科学为重点的暑期实习。项目工作人员与教师导师一起,将协助奖学金获得者制定个人发展计划,概述奖学金获得者的职业目标和实现这些目标的进展。该项目还将致力于提高STEM专业和课程的学生保留率。通过建立一个支持奖学金获得者的系统,该项目将测试新方法,为STEM行业准备和提供STEM职业准备专业人员。项目研究结果还将产生可操作的整合新知识,以影响农村机构,目标是高成就,低收入的本科生入学进入NSF批准的STEM专业。该项目的主要成果是,在六年内,每个奖学金获得者将毕业于JSU数据科学辅修专业或数据科学专业,并获得STEM学士学位,并在区域,全州或全国需要STEM专业人员或攻读STEM研究生课程。该项目的具体目标是积极解决STEM行业报告的影响STEM劳动力的几个差距。(1)一个基本的技能差距是适应能力,批判性思维,并进行复杂的创造性解决问题的能力。(2)信念差距是关于在STEM中成功所需的特质的不正确信念。(3)高等教育差距的出现是因为大学培养的STEM毕业生比劳动力所需的少。该项目旨在通过提供奖学金和干预服务来解决这些差距,以支持不同学生的STEM学位追求。此外,该项目还将调查心理社会因素的作用以及有针对性的干预措施在解决奖学金获得者在技能和信仰方面的关键差距方面的效果。该项目将探讨是否积极解决访问,参与,技能发展和信仰方面的关键差距将导致奖学金获得者成功完成数据科学和STEM的学习计划,并为研究生STEM学习和/或进入STEM劳动力做好充分准备。该项目将促进对招聘和支持具有学术能力,人才或潜力的本科生的有效性的了解和理解,这些学生是低收入的,并且证明了未满足的财务需求,以完成数据科学未成年人或数据科学集中并追求NSF批准的STEM学科。该项目将由一名项目工作人员进行内部评价,该工作人员将通过透镜确定可推广的知识,并由一个外部评价小组进行形成性和总结性评价。项目小组和外部评价小组将在区域会议、期刊文章、地方和区域报纸、社交媒体和项目网站上分享项目成果。该项目由NSF的科学,技术,工程和数学奖学金计划资助,该计划旨在增加低收入,学术才华的学生人数,这些学生表现出未满足的经济需求,并获得STEM领域的学位。它还旨在改善未来STEM工作者的教育,并提供有关低收入学生的学术成功、保留、转学、毕业和学术/职业途径的知识。该奖项反映了NSF的法定使命,并且通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janice Case其他文献
Janice Case的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Leveraging Data Science Applications to Improve Children's Environmental Health in Sub-Saharan Africa (DICE)
利用数据科学应用改善撒哈拉以南非洲儿童的环境健康 (DICE)
- 批准号:
10714773 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Leveraging Big Data Science to Focus the HIV Response in Countries with Generalized HIV Epidemics
利用大数据科学重点关注艾滋病毒流行国家的艾滋病毒应对工作
- 批准号:
10548465 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Leveraging Big Data Science to Focus the HIV Response in Countries with Generalized HIV Epidemics
利用大数据科学重点关注艾滋病毒流行国家的艾滋病毒应对工作
- 批准号:
10673799 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
- 批准号:
RGPIN-2017-04647 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Discovery Grants Program - Individual
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10480929 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Developing novel strategies for personalized treatment and prevention of ALS: Leveraging the global exposome, genome, epigenome, metabolome, and inflammasome with data science in a case/control cohort
制定个性化治疗和预防 ALS 的新策略:在病例/对照队列中利用数据科学的全局暴露组、基因组、表观基因组、代谢组和炎症小体
- 批准号:
10271663 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
- 批准号:
10674901 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别:
Developing novel strategies for personalized treatment and prevention of ALS: Leveraging the global exposome, genome, epigenome, metabolome, and inflammasome with data science in a case/control cohort
制定个性化治疗和预防 ALS 的新策略:在病例/对照队列中利用数据科学的全局暴露组、基因组、表观基因组、代谢组和炎症小体
- 批准号:
10649520 - 财政年份:2021
- 资助金额:
$ 150万 - 项目类别: