Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids

利用数据科学了解受阿片类药物影响的母亲和儿童的结果

基本信息

  • 批准号:
    10480929
  • 负责人:
  • 金额:
    $ 35.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-10 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT- PROJECT 2 Over the past two decades, the number of women with opioid use disorder (OUD) during pregnancy and the number of infants born affected by opioids has increased substantially. However, there remain key knowledge gaps in our understanding of how neonatal and postpartum treatment for opioid use impacts the maternal- infant dyad. Much of the current research around infants exposed to opioids focuses on those diagnosed with Neonatal Opioid Withdrawal Syndrome (NOWS), potentially under-identifying opioid-exposed infants that don’t develop the syndrome but are at risk for adverse outcomes. Postpartum women with OUD are at risk for outcomes that are detrimental to both mother and infant including overdose, severe maternal morbidity, and death. While we know medications for OUD, including buprenorphine and methadone, can improve short-term outcomes for women, evidence of their impact on maternal outcomes and dyadic stability after delivery is limited. Furthermore, maternal and infant wellbeing is intertwined, yet our understanding of dyadic outcomes (e.g., retaining custody) is limited and research has primarily focused on separate mother and infant wellbeing. Improved understanding of dyadic outcomes has the potential to inform tailored therapeutics and precision medicine for opioid-affected dyads. To address these key knowledge gaps we will utilize data linkages and novel data science methodologies to 1) develop and validate electronic health record-based algorithms to identify opioid-exposed infants and their mothers, identify key covariates for dyad wellbeing, and link to state data systems; 2) test the hypothesis that dyads with prenatal maternal treatment for OUD compared to dyads with untreated maternal OUD have improved birth outcomes and post-natal service utilization of recommended services in the first six months postpartum; and 3) test the hypothesis that dyads with prenatal maternal treatment for OUD compared to dyads with untreated maternal OUD have improved dyadic stability at one- year postpartum and whether infant treatment modifies those outcomes. This proposal will fill critical knowledge gaps and create enduring, scalable data science methods that will foster innovation, data sharing, and research focused on maternal-infant dyads affected by the opioid crisis.
项目摘要/摘要-项目2

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen W Patrick其他文献

Hospital Quality Indicators for Opioid-Exposed Infants: Results From an Expert Consensus Panel.
阿片类药物暴露婴儿的医院质量指标:专​​家共识小组的结果。
  • DOI:
    10.1542/peds.2024-065721
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Jordan M Harrison;Bradley D Stein;Sarah F Loch;S. Lorch;Stephen W Patrick
  • 通讯作者:
    Stephen W Patrick
The Intergenerational Impact and Trauma of Child Protective Services Referrals on Families.
儿童保护服务转介对家庭的代际影响和创伤。
  • DOI:
    10.1542/neo.24-11-e763
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claudia Ocampo;Jasmyne Nelson;Lauren Harrington;Audrey Rush;Stephen W Patrick;Uchenna Anani
  • 通讯作者:
    Uchenna Anani
A Comprehensive Approach to the Opioid Epidemic.
应对阿片类药物流行病的综合方法。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Stephen W Patrick
  • 通讯作者:
    Stephen W Patrick

Stephen W Patrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen W Patrick', 18)}}的其他基金

Improving outcomes for substance-affected families in the child welfare system
改善儿童福利系统中受药物影响的家庭的成果
  • 批准号:
    10734742
  • 财政年份:
    2023
  • 资助金额:
    $ 35.86万
  • 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
  • 批准号:
    10674901
  • 财政年份:
    2021
  • 资助金额:
    $ 35.86万
  • 项目类别:
Improving Access to Treatment for Women with Opioid Use Disorder
改善患有阿片类药物使用障碍的女性获得治疗的机会
  • 批准号:
    10442184
  • 财政年份:
    2021
  • 资助金额:
    $ 35.86万
  • 项目类别:
Leveraging Data Science to Understand Outcomes for Mothers and Children Affected by Opioids
利用数据科学了解受阿片类药物影响的母亲和儿童的结果
  • 批准号:
    10309017
  • 财政年份:
    2021
  • 资助金额:
    $ 35.86万
  • 项目类别:
Improving Access to Treatment for Women with Opioid Use Disorder
改善患有阿片类药物使用障碍的女性获得治疗的机会
  • 批准号:
    10088429
  • 财政年份:
    2018
  • 资助金额:
    $ 35.86万
  • 项目类别:
Neonatal Abstinence Syndrome: Risk of Drug Withdrawal in Opioid-Exposed Infants
新生儿戒断综合症:阿片类药物暴露婴儿的戒断风险
  • 批准号:
    9000144
  • 财政年份:
    2015
  • 资助金额:
    $ 35.86万
  • 项目类别:
Neonatal Abstinence Syndrome: Risk of Drug Withdrawal in Opioid-Exposed Infants
新生儿戒断综合症:阿片类药物暴露婴儿的戒断风险
  • 批准号:
    9250249
  • 财政年份:
    2015
  • 资助金额:
    $ 35.86万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.86万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了