Data-Driven Dynamic State-Estimation for Modern Power Systems
现代电力系统的数据驱动动态状态估计
基本信息
- 批准号:2221784
- 负责人:
- 金额:$ 43.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop data-driven algorithms for dynamic state-estimation of modern power systems with uncertainties of distributed energy resources. The project will bring transformative change to the state-of-the-art dynamic state-estimators that heavily rely on accurate physics-based models and are challenged by model uncertainties and disturbances. A combination of machine learning and signal processing techniques will be used to convert available measurements into accurate dynamic models. The intellectual merits of the project include generating new knowledge on monitoring and situational awareness in modern power systems as well as developing a novel data-driven paradigm to improve smart grid resilience through dynamic state estimation. The broader impacts of the project include addressing grid outages and resolving cascading failures by better tracking power system asset dynamics in real-time. A number of educational and outreach activities are also used to address underrepresentation drivers in electrical engineering, such as summer research activities for underrepresented students through STEM Summer Institute (STEM-SI), custom-designed senior projects, and open-source materials available to the scientific community.It is important to develop efficient dynamic estimation techniques to better monitor and control inverter-dominated grids, but there is a technical gap in modeling distributed energy resources (DERs) that is not fully understood. To address this challenge, this project will develop advanced data-driven approaches leveraging statistical machine learning theory and available measurements to identify nonlinear mathematical models of inverter-based DERs. Using the developed models, uncertainty-aware decentralized data-driven dynamic state estimation of DER states will be designed without the need for complex physics-based models or simulations. In addition to providing accurate and state-aware dynamic models for various types of DERs (such as storage, solar panels and wind generators), the research results from the proposed framework will reduce the current complexity of implementing dynamic state estimation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF项目旨在开发数据驱动的算法,用于具有分布式能源不确定性的现代电力系统的动态状态估计。该项目将为最先进的动态状态估计器带来革命性的变化,这些估计器严重依赖精确的基于物理的模型,并受到模型不确定性和干扰的挑战。机器学习和信号处理技术的结合将用于将可用的测量转换为准确的动态模型。该项目的智力优势包括产生关于现代电力系统监测和态势感知的新知识,以及开发一种新的数据驱动范式,通过动态状态估计来提高智能电网的弹性。该项目的更广泛影响包括通过更好地实时跟踪电力系统资产动态来解决电网中断和连锁故障。许多教育和推广活动也被用来解决电气工程中代表性不足的驱动因素,例如通过STEM夏季研究所(STEM-SI)为代表性不足的学生开展夏季研究活动,定制设计的高级项目,以及科学界可用的开源材料。重要的是要开发有效的动态估计技术,以更好地监测和控制逆变器主导的电网,但是在对分布式能源(DER)进行建模方面存在尚未完全理解的技术差距。为了应对这一挑战,该项目将开发先进的数据驱动方法,利用统计机器学习理论和可用的测量来识别基于逆变器的DER的非线性数学模型。使用开发的模型,不确定性感知分散的数据驱动的DER状态的动态状态估计将被设计,而不需要复杂的基于物理的模型或仿真。除了为各种类型的DER(如存储、太阳能电池板和风力发电机)提供准确和状态感知的动态模型外,拟议框架的研究成果将降低当前实施动态状态估计的复杂性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Feedback Linearization Control of Distributed Energy Resources Using Sparse Regression
- DOI:10.1109/tsg.2023.3298133
- 发表时间:2024-03
- 期刊:
- 影响因子:9.6
- 作者:J. Khazaei;A. Hosseinipour
- 通讯作者:J. Khazaei;A. Hosseinipour
Model Identification of Distributed Energy Resources Using Sparse Regression and Koopman Theory
- DOI:10.1109/gtd49768.2023.00033
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Javad Khazaei;F. Moazeni
- 通讯作者:Javad Khazaei;F. Moazeni
Data-Driven Sparse Model Identification of Inverter-Based Resources for Control in Smart Grids
- DOI:10.1109/icsmartgrid58556.2023.10170821
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:J. Khazaei;Wenxin Liu;F. Moazeni
- 通讯作者:J. Khazaei;Wenxin Liu;F. Moazeni
Data-Enabled Identification of Nonlinear Dynamics of Water Systems using Sparse Regression Technique
使用稀疏回归技术对水系统非线性动力学进行数据识别
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:F. Moazeni;Javad Khazaei
- 通讯作者:Javad Khazaei
A Data Driven Framework for Sparse Impedance Identification of Power Converters in DC Microgrids
直流微电网中功率转换器稀疏阻抗识别的数据驱动框架
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hosseinipour, Ali;Khazaei, Javad;Blum, Rick
- 通讯作者:Blum, Rick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javad Khazaei其他文献
Multi-task deep learning economic dispatch of microgrids with electric vehicles and renewables
含电动汽车和可再生能源的微电网多任务深度学习经济调度
- DOI:
10.1016/j.segan.2025.101766 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.600
- 作者:
Seyed Morteza Ghorashi;Javad Khazaei;Shalinee Kishore - 通讯作者:
Shalinee Kishore
Predictive control of interlinked water-energy microgrids
- DOI:
10.1016/j.apenergy.2023.121455 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Saskia A. Putri;Faegheh Moazeni;Javad Khazaei - 通讯作者:
Javad Khazaei
AI and Learning Systems - Industrial Applications and Future Directions
人工智能和学习系统 - 工业应用和未来方向
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Javad Khazaei;Dinh Hoa Nguyen - 通讯作者:
Dinh Hoa Nguyen
Data-driven predictive control strategies of water distribution systems using sparse regression
使用稀疏回归的数据驱动的供水系统预测控制策略
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7
- 作者:
Saskia A Putri;F. Moazeni;Javad Khazaei - 通讯作者:
Javad Khazaei
Utility-scale Wind Turbines and Wind Farms
公用事业规模风力发电机和风电场
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Javad Khazaei;Dinh Hoa Nguyen;Arash Asrari - 通讯作者:
Arash Asrari
Javad Khazaei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
Standard Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
- 批准号:
2237696 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
Continuing Grant
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
- 批准号:
10051037 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
EU-Funded
Multiscale data-driven failure prediction of hydrogen composite vessels under static and dynamic impact loading
静态和动态冲击载荷下氢复合材料容器的多尺度数据驱动失效预测
- 批准号:
EP/Y024567/1 - 财政年份:2023
- 资助金额:
$ 43.15万 - 项目类别:
Fellowship
Electric Fleets with On-site Renewable Energy Sources (EFORES): Data-driven Dynamic Dispatching and Charging under Uncertainties
现场可再生能源电动车队(EFORES):不确定性下数据驱动的动态调度和充电
- 批准号:
EP/W028727/1 - 财政年份:2022
- 资助金额:
$ 43.15万 - 项目类别:
Research Grant
A data-driven dynamic optimization framework for digital commerce platforms
数据驱动的数字商务平台动态优化框架
- 批准号:
568869-2022 - 财政年份:2022
- 资助金额:
$ 43.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The Directional Influence of the Superior Colliculus in the Visual Attention Network: Dynamic Models and Data-Driven Studies of the Monkey Brain
视觉注意网络中上丘的定向影响:猴脑的动态模型和数据驱动研究
- 批准号:
557604-2021 - 财政年份:2022
- 资助金额:
$ 43.15万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




