FW-HTF-P: Transforming Small and Medium-Sized Manufacturing Firms Through Participatory AI Adoption and Implementation

FW-HTF-P:通过参与式人工智能采用和实施来改造中小型制造企业

基本信息

  • 批准号:
    2222751
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to transform small and medium-sized manufacturing enterprises (SMEs) in the U.S. by analyzing how the adoption of artificial intelligence (AI)-based technologies impacts manufacturing SMEs’ labor force and productivity. AI-based technologies pose a number of concerns around retraining and replacement of workers, but also potential benefits around productivity and the creation of new jobs, including ones that are less physically demanding and may support workers currently excluded from manufacturing jobs. The project focuses on SMEs rather than larger firms both because SMEs employ a large majority of U.S. manufacturing workers and because SMEs may pose unique challenges for the adoption of AI-based technologies in terms of the resources and skills these firms have available to make these technologies work for them. The goals of the project are to: (1) understand the challenges that manufacturing SMEs and their workers currently face in adopting and implementing new AI technologies, restructuring work and tasks and learning new skills; (2) design a controlled manufacturing environment to support studies of workers collaborating with AI-based technologies; (3) develop a framework that SMEs can use when adopting these technologies; and, (4) develop connections with industry partners and community colleges to identify ways to lower the barriers to the adoption of new AI technologies on the factory floor and to develop a robust workforce training program. To accomplish these goals, the project team will build a collaboration with manufacturing firms, both SMEs and large corporations holding multiple SMEs, in Indiana’s South Bend-Elkhart region. A team of experts in the areas of economics, engineering, AI, information technology, analysis and operations, and sociology will work with these local SMEs and conduct on-site observations and in-depth interviews to understand companies’ current technology use and needs, as well as opportunities for AI-based technologies to meet those needs. These findings will inform a survey to collect data on a wider range of companies’ financial situations and production capacity, technological sophistication, management and hiring practices, workforce composition and turnover, and work conditions. Together this information will be used to identify promising candidate AI-based technologies to explore further, then design a manufacturing cell that facilitates controlled studies of workers collaborating with these technologies. Further, the project team will develop novel approaches to training manufacturing SME employees to allow them to be more directly involved in the adoption and use of these AI-based technologies. This curriculum development work will be done in collaboration with Ivy Tech, which has 40 community college locations in Indiana and is developing a School of Advanced Manufacturing, Engineering and Applied Science in response to the needs of the state’s manufacturing industry. Based on these activities, the project will develop a framework called “Participatory AI Adoption and Implementation” with guidelines for how workplaces, workers, and AI-based technologies can productively interact in manufacturing SMEs, focusing on ways to involve workers in the firm’s decision process when adopting new technologies from design to deployment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过分析采用基于人工智能(AI)的技术如何影响制造业中小企业的劳动力和生产率来改造美国的中小制造业企业(SME)。基于人工智能的技术对工人的再培训和替代提出了一些担忧,但也对生产力和创造新的就业机会产生了潜在的好处,包括那些对体力要求不高的工作,可能会支持目前被排除在制造业工作之外的工人。该项目的重点是中小企业,而不是大型企业,因为中小企业雇用了美国绝大多数制造业工人,而且中小企业可能会对采用基于人工智能的技术构成独特的挑战,因为这些公司拥有的资源和技能可以使这些技术为他们工作。该项目的目标是:(1)了解制造业中小企业及其工人目前在采用和实施新人工智能技术、重组工作和任务以及学习新技能方面面临的挑战;(2)设计一个受控的制造环境,以支持工人与人工智能技术合作的研究;(3)开发一个中小企业在采用这些技术时可以使用的框架;(4)与行业合作伙伴和社区学院建立联系,以确定如何降低在工厂车间采用新人工智能技术的障碍,并制定强大的劳动力培训计划。为了实现这些目标,项目小组将与印第安纳州南本德-埃尔克哈特地区的制造公司(包括中小企业和控股多个中小企业的大公司)建立合作关系。一个由经济学、工程学、人工智能、信息技术、分析和运营以及社会学领域的专家组成的团队将与这些当地中小企业合作,进行现场观察和深入访谈,以了解企业当前的技术使用和需求,以及基于人工智能的技术满足这些需求的机会。这些调查结果将为一项调查提供信息,以收集有关公司财务状况和生产能力、技术先进程度、管理和招聘做法、劳动力组成和流动率以及工作条件等更广泛方面的数据。这些信息将被用于识别有前途的候选人工智能技术,以进一步探索,然后设计一个制造单元,以促进对与这些技术合作的工人的控制研究。此外,该项目团队将开发新的方法来培训制造业中小企业员工,使他们能够更直接地参与采用和使用这些基于人工智能的技术。这项课程开发工作将与常春藤理工学院合作完成,该学院在印第安纳州拥有40所社区学院,并正在开发一所先进制造、工程和应用科学学院,以满足该州制造业的需求。在这些活动的基础上,该项目将开发一个名为“人工智能采用和实施”的框架,其中包括工作场所,工人和基于人工智能的技术如何在制造业中小企业中进行有效互动的指导方针,该奖项的重点是如何让工人参与公司的决策过程时,采用新技术从设计到部署。该奖项反映了NSF的法定使命,并已被认为值得支持,通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongsuk Lee其他文献

End-to-end performance improvements for multi-hop ad-hoc wireless networks
多跳自组织无线网络的端到端性能改进
On Performance Improvement for 802.11-based Multi-hop Ad Hoc Wireless Networks
基于802.11的多跳Ad Hoc无线网络的性能改进
Control Flow Hardening with Program Counter Encoding for ARM ® Processor Architecture
使用 ARM ® 处理器架构的程序计数器编码强化控制流
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seho Park;Jongmin Lee;Yongsuk Lee;Gyungho Lee
  • 通讯作者:
    Gyungho Lee
Detecting Code Reuse Attacks with Branch Prediction
通过分支预测检测代码重用攻击
  • DOI:
    10.1109/mc.2018.2141035
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Yongsuk Lee;Gyungho Lee
  • 通讯作者:
    Gyungho Lee
An Empirical Study on the Characteristics of Program Control Flow Data
程序控制流数据特征的实证研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongsuk Lee;Gyungho Lee
  • 通讯作者:
    Gyungho Lee

Yongsuk Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: 2023 NSF FW-HTF PI Meeting; Boston, Massachusetts; 31 August to 1 September 2023
会议:2023 NSF FW-HTF PI 会议;
  • 批准号:
    2329684
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FW-HTF-R: The Future of Equitable Childcare Worker Technologies
FW-HTF-R:公平儿童保育员技术的未来
  • 批准号:
    2222242
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research:FW-HTF-P: The Future of Virtual Teams: Enhancing Collaborative Creativity and Socio-cognitive wellbeing in Video-based Teams
协作研究:FW-HTF-P:虚拟团队的未来:增强基于视频的团队的协作创造力和社会认知福祉
  • 批准号:
    2222764
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了