Light Addressable Thin Film Sensor System for High Resolution Imaging

用于高分辨率成像的光可寻址薄膜传感器系统

基本信息

  • 批准号:
    2223387
  • 负责人:
  • 金额:
    $ 40.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Abstract title: A Light Addressable Thin Film Sensor System for High Resolution ImagingPrincipal investigator: Jinghua Li, The Ohio State UniversityBiofluids in human bodies contain a variety of chemical biomarkers that can reveal health status and age-based conditions. Recording the spatiotemporal distribution of these biomarkers within the surfaces of soft tissues can provide valuable information about bio-related dynamic, heterogeneous processes which could potentially contribute to the early diagnosis and effective treatment of diseases. However, there is a knowledge gap in understanding these processes due to the lack of bio-integrated analytical tools with sufficient spatial and temporal resolutions. This study aims to build a flexible, high-resolution imaging system using thin film semiconductor nanomembranes. When paired with a focused, addressable, and modulated laser beam, the imaging system can generate a quantifiable photocurrent, the amplitude of which scales with the local concentration of target biomarkers. This project seeks to contribute to the education of undergraduate and high school students by providing training and research opportunities in technologically relevant areas such as optoelectronics, physics, and biomedical engineering. Results obtained from this study will be used to create “deformable-imaging-film” demo kits for high school students participating in the Design Learning Center Capstone Experience Program to inspire their pursuits of STEM careers.The proposed research will investigate a series of fundamental questions related to the design principles of the high-resolution imaging system based on the field effect in semiconductor physics. Exploration of the flexible and light addressable system will enhance the understandings of optical-electrical coupling in submicron semiconductors for biosensing on curvilinear and soft surfaces. The hypothesis is that the proposed thin film sensing platform can unprecedentedly combine functionalities needed for imaging biomarkers on/within soft tissues, including flexibility, scalability, high spatiotemporal resolution, and multifunctionality. Specific aims of this project include: (1) develop flexible semiconductor nanomembranes on polymer substrates, and explore bias voltage induced formation of depletion regions within the semiconductors in liquid environment; (2) investigate optical-electrical coupling behaviors in the semiconductors with the radiation of a focused, modulated laser beam, and uncover the structure-interface-resolution correlations; and (3) establish the viability of using the resulting polymer-supported nanomembranes for imaging the distribution of multiple biomarkers. Overall, the research outcomes will provide understandings of the chemical, electrical, optical, and biological phenomena at the solution-electronics interface within the flexible and light addressable imaging system. The codesign of thin film electronics, biochemical interfaces, and recording hardware will create new knowledge at the intersection of conventional fields of technical study. The sensing technologies, interface designs, theoretical models, and device concepts can be transformative in multiple research fields spanning nanotechnology, optoelectronics, biomedical engineering, and clinical medicine. For future applications, the high-resolution imaging of chemical and/or biological markers in large scale can provide accurate information for early diagnosis, intervention, and cure of diseases when combined with data science and artificial intelligence. In addition to monitoring biological processes, this imaging technology could also be useful in areas such as quality control of industrial lubricants, fuel cells, and food.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要标题:一种用于高分辨率成像的光寻址薄膜传感器系统主要研究者:李京华,俄亥俄州州立大学人体内的生物流体含有多种化学生物标志物,可以揭示健康状况和年龄相关的状况。记录这些生物标志物在软组织表面内的时空分布可以提供关于生物相关的动态、异质过程的有价值的信息,这可能有助于疾病的早期诊断和有效治疗。然而,由于缺乏具有足够的空间和时间分辨率的生物综合分析工具,在理解这些过程方面存在知识差距。本研究的目的是建立一个灵活的,高分辨率的成像系统,使用薄膜半导体纳米膜。当与聚焦的、可寻址的和调制的激光束配对时,成像系统可以产生可量化的光电流,其幅度与靶生物标志物的局部浓度成比例。该项目旨在通过提供光电子学、物理学和生物医学工程等技术相关领域的培训和研究机会,为本科生和高中生的教育做出贡献。本研究的成果将用于制作“变形成像胶片”演示套件,供参加设计学习中心Capstone体验计划的高中生使用,以激发他们对STEM职业的追求。本研究将探讨基于半导体物理场效应的高分辨率成像系统设计原理的一系列基本问题。对柔性光寻址系统的探索将加深对亚微米半导体中光电耦合的理解,用于曲线和软表面上的生物传感。假设所提出的薄膜感测平台可以前所未有地联合收割机组合成像软组织上/内的生物标记物所需的功能,包括灵活性、可扩展性、高时空分辨率和多功能性。本项目的具体目标包括:(1)在聚合物基底上制备柔性半导体纳米膜,并探索在液体环境中偏压诱导半导体内耗尽区的形成:(2)研究半导体在聚焦调制激光束照射下的光电耦合行为,揭示结构-界面-分辨率的相关性;和(3)建立使用所得聚合物支撑的纳米膜对多种生物标志物的分布进行成像的可行性。总的来说,研究成果将提供在灵活的光寻址成像系统内的解决方案电子接口的化学,电学,光学和生物现象的理解。薄膜电子学、生物化学接口和记录硬件的协同设计将在传统技术研究领域的交叉点上创造新的知识。传感技术,界面设计,理论模型和设备概念可以在纳米技术,光电子学,生物医学工程和临床医学的多个研究领域进行变革。对于未来的应用,大规模的化学和/或生物标志物的高分辨率成像可以为疾病的早期诊断,干预和治疗提供准确的信息,当与数据科学和人工智能相结合时。除了监测生物过程,这种成像技术还可以用于工业润滑油、燃料电池和食品的质量控制等领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers.
  • DOI:
    10.1021/acsnano.2c08511
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Shulin Chen;Tzu-Li Liu;Yan Dong;Jinghua Li
  • 通讯作者:
    Shulin Chen;Tzu-Li Liu;Yan Dong;Jinghua Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinghua Li其他文献

Error Characteristics of GNSS Derived TEC
GNSS 导出的 TEC 误差特征
  • DOI:
    10.3390/atmos13020237
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Guanyi Ma;Jiangtao Fan;Qingtao Wan;Jinghua Li
  • 通讯作者:
    Jinghua Li
Hybrid RANS/LES modelling of OGV/prediffuser flow
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinghua Li
  • 通讯作者:
    Jinghua Li
Matrix Variate Restricted Boltzmann Machine based on Canonical Polyadic Decomposition
基于正则多元分解的矩阵变量受限玻尔兹曼机
ROTI Keograms based on CMONOC to characterize the ionospheric irregularities in 2014
基于 CMONOC 的 ROTI Keograms 表征 2014 年电离层不规则性
  • DOI:
    10.1186/s40623-022-01708-0
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinghua Li;Guanyi Ma;Takashi Maruyama;Qingtao Wan;Jiangtao Fan;Jie Zhang;Xiaolang Wang
  • 通讯作者:
    Xiaolang Wang
Performance evaluation of IRI-2016 with GPS-derived TEC at the meridian of 110oE in China of 2014
2014年中国110oE子午线IRI-2016与GPS衍生TEC的性能评估
  • DOI:
    10.1016/j.jastp.2020.105206
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Qingtao Wan;Guanyi Ma;Jinghua Li;Xiaolan Wang;Weijun Lu;Takashi Maruyama;Jiangtao Fan;Jie Zhang
  • 通讯作者:
    Jie Zhang

Jinghua Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
  • 批准号:
    10614795
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Electronically Addressable DNA Assembly
电子可寻址 DNA 组装
  • 批准号:
    10697597
  • 财政年份:
    2023
  • 资助金额:
    $ 40.48万
  • 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
  • 批准号:
    10580393
  • 财政年份:
    2022
  • 资助金额:
    $ 40.48万
  • 项目类别:
3D Photoelectrochemical imaging in porous light-addressable structures
多孔光可寻址结构中的 3D 光电化学成像
  • 批准号:
    EP/V047523/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Research Grant
CSR:Small: Rethinking Filesystem Encryption and Auditing in the Era of Byte-Addressable Non-Volatile Memories
CSR:小:重新思考字节可寻址非易失性存储器时代的文件系统加密和审计
  • 批准号:
    2049968
  • 财政年份:
    2020
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Standard Grant
CAREER: Spatiotemporally addressable hydrogel biomaterials as tools for investigating fibroblast mechanobiology
职业:时空可寻址水凝胶生物材料作为研究成纤维细胞力学生物学的工具
  • 批准号:
    1941401
  • 财政年份:
    2020
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Continuing Grant
Development of an all-optical platform for spatiotemporal regulation of beta-cell signaling with photoswitchable drugs and recording of insulin release by light-addressable potentiometric sensor
开发全光学平台,用于通过光可切换药物对 β 细胞信号进行时空调节,并通过光可寻址电位传感器记录胰岛素释放
  • 批准号:
    20K22516
  • 财政年份:
    2020
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Engineering Light Addressable Electrochemical Sensors for Imaging Chemical Neurotransmission
职业:工程光可寻址电化学传感器用于化学神经传递成像
  • 批准号:
    1944432
  • 财政年份:
    2020
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Continuing Grant
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
  • 批准号:
    10246271
  • 财政年份:
    2019
  • 资助金额:
    $ 40.48万
  • 项目类别:
CNS Core: Small: Byte-Addressable I/O Everywhere
CNS 核心:小型:无处不在的字节可寻址 I/O
  • 批准号:
    1910327
  • 财政年份:
    2019
  • 资助金额:
    $ 40.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了