Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
基本信息
- 批准号:10246271
- 负责人:
- 金额:$ 60.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmplifiersBehaviorBiologicalBrainBrain regionBudgetsCalciumDevelopmentFunctional ImagingGenerationsGeneticGoalsImageImaging DeviceIndividualIndustrializationLabelMeasurementMethodsMicroscopeMonitorMusNervous system structureNeuronsNeurosciencesNoiseOpticsOutputPerformancePhotonsPhysiologic pulsePopulationResearchResearch PersonnelResolutionResource SharingSamplingScanningSeedsSignal TransductionSourceSpecimenSpeedStructureSystemTechniquesTestingThree-Dimensional ImagingTimeTimeLineTranslatingViralWorkbrain researchbrain tissuecalcium indicatorcell typedesignexperimental studyfeedingimprovedin vivointerestmultiphoton imagingmultiphoton microscopyoptical imagingprogramsrelating to nervous systemtemporal measurementtooltransmission processvoltage
项目摘要
Abstract
A major goal of brain research is to image the dynamics of groups of neurons during behavior. Although
even the simplest behaviors involve interactions across multiple parts of the nervous system, our tools for
assessing function at the level of individual neurons usually allow only access to small regions of the brain, and
with limited temporal resolution. Optical recordings of activity are critical to probe neural systems because they
provide high-resolution, non-invasive measurements, ranging from single neurons to entire populations in intact
nervous systems, and are readily combined with genetic methods to provide cell type-specific recordings.
Nevertheless, the limited spatial scale and temporal resolution remain a major challenge for optical imaging.
Cellular-resolution imaging in scattering brains is typically achieved with multiphoton microscopy (MPM). The
focus of this proposal is to develop, implement, and disseminate a new generation of multiphoton imaging tools
and genetically encoded indicators that allow deep, fast, and large-scale imaging of structure and function with
cellular and subcellular resolution. To approach fundamental limits defined by the 'photon budget', we will
develop an adaptive excitation source (AES). By feeding the structural information of the sample to the source,
and synchronizing the on-demand pulses with the microscope scanning system, the AES transforms a
conventional MPM into a “random-access” MPM that only excites regions of interest. We will integrate the AES
with high speed scanners, resulting in a new AES-MPM that will provide >10x improvement in imaging speed or
the number of neurons imaged. We will combine the AES effort at Cornell with the development effort of
genetically encoded voltage indicator (GEVI) at Stanford and Janelia Research Campus, and demonstrate the
AES-MPM in imaging GEVI labeled neurons in mouse brains in vivo. We will also combine the AES with a
multiphoton mesoscope to demonstrate large scale imaging of genetically encoded Ca indicator (GECI). The
research involves close interactions between the PI (Xu), Co-investigator Michael Lin (Stanford), and Karel
Svoboda (Janelia). Furthermore, the investigators will work closely with industrial partners to explore the potential
of translating the AES into a commercially available system, which provides a direct path to broad dissemination.
摘要
大脑研究的一个主要目标是成像一组神经元在行为过程中的动态。虽然
即使是最简单的行为也涉及神经系统多个部分的相互作用,我们的工具
在单个神经元水平上评估功能通常只允许进入大脑的小区域,并且
时间分辨率有限。活动的光学记录对于探测神经系统至关重要,因为它们
提供高分辨率、非侵入性测量,范围从单个神经元到完整的整个种群
神经系统,并很容易与遗传方法相结合,提供特定细胞类型的记录。
然而,有限的空间尺度和时间分辨率仍然是光学成像的主要挑战。
散射脑中的细胞分辨率成像通常是通过多光子显微镜(MPM)实现的。这个
这项提案的重点是开发、实施和传播新一代多光子成像工具
以及基因编码的指示器,允许对结构和功能进行深度、快速和大规模的成像
细胞和亚细胞分辨率。为了达到“光子预算”所定义的基本极限,我们将
研制自适应激励源(AES)。通过将样品的结构信息馈送到源,
并将按需脉冲与显微镜扫描系统同步,所述AES将
将传统的MPM转换为仅激发感兴趣区域的“随机访问”MPM。我们将集成AES
使用高速扫描仪,产生新的AES-MPM,它将使成像速度提高10倍或
被成像的神经元的数量。我们将把康奈尔大学的AES工作与
斯坦福大学和珍妮莉亚研究校园的遗传编码电压指示器(GEVI),并展示了
应用AES-MPM对小鼠脑内GEVI标记神经元进行活体成像我们还将把AES与一个
多光子介镜显示遗传编码的钙指示剂(GECI)的大规模成像。这个
研究涉及派(徐)、合作调查员迈克尔·林(斯坦福大学)和卡雷尔之间的密切互动
斯沃博达(珍妮莉亚)。此外,调查人员将与行业合作伙伴密切合作,探索潜在的
将AES翻译成商业可用的系统,这提供了一条广泛传播的直接途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRIS XU其他文献
CHRIS XU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRIS XU', 18)}}的其他基金
A multi-foci objective lens for large scale brain activity recording
用于大规模大脑活动记录的多焦点物镜
- 批准号:
10731905 - 财政年份:2023
- 资助金额:
$ 60.95万 - 项目类别:
Understanding the in vivo impact of immunotherapies in splenic lymphoma by intravital three-photon microscopy
通过活体三光子显微镜了解免疫疗法对脾淋巴瘤的体内影响
- 批准号:
10576013 - 财政年份:2023
- 资助金额:
$ 60.95万 - 项目类别:
Deep and fast imaging using adaptive excitation sources
使用自适应激励源进行深度快速成像
- 批准号:
10516870 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10580393 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Wavefront sensor for deep imaging of the brain
用于大脑深度成像的波前传感器
- 批准号:
9136863 - 财政年份:2015
- 资助金额:
$ 60.95万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
8827026 - 财政年份:2014
- 资助金额:
$ 60.95万 - 项目类别:
Optimization of 3-photon microscopy for Large Scale Recording in Mouse Brain
用于小鼠大脑大规模记录的三光子显微镜优化
- 批准号:
9130300 - 财政年份:2014
- 资助金额:
$ 60.95万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8271179 - 财政年份:2012
- 资助金额:
$ 60.95万 - 项目类别:
Technology development for in vivo deep tissue imaging
体内深层组织成像技术开发
- 批准号:
8604711 - 财政年份:2012
- 资助金额:
$ 60.95万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 60.95万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 60.95万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 60.95万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 60.95万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 60.95万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 60.95万 - 项目类别:
Collaborative R&D














{{item.name}}会员




