EFRI ELiS: Bioweathering dynamics and ecophysiology of microbially catalyzed soil genesis of Martian regolith
EFRI ELiS:火星风化层微生物催化土壤成因的生物风化动力学和生态生理学
基本信息
- 批准号:2223829
- 负责人:
- 金额:$ 188.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A human mission to Mars is projected to take place by the late 2030s. Identifying viable sources of food will be critical to a successful mission given the significant distance between Earth and Mars. However, the Martian soil contains perchlorate salts at concentrations that are toxic to most forms of life including plants and crops. The overarching goal of this project is to explore the development and implementation of a microbially catalyzed soil genesis process that could remove perchlorate from Martian regolith while producing a soil containing the required organic carbon and inorganic nutrients to support plant growth and cultivation. To advance this goal, the project team proposes to investigate how to tune the bioweathering of Martian soil simulants by selected microbial consortia to generate viable soils that could support plant growth and crop cultivation on Mars. The successful completion of this project will benefit society through the generation of fundamental knowledge and the identification of microbial consortia that could convert sterile and toxic soils, such as the Martian regolith, to organic and nutrient rich soils that can sustain plant growth and crop cultivation. Additional benefits to society will be achieved through education and training including the mentoring of one postdoctoral researcher, one graduate student, and two undergraduate students at Arizona State University, one graduate student and one undergraduate student at the Florida Institute of Technology, and one graduate student at the University of Arizona.Mars regolith, or the surface material of Mars, is sterile with high concentrations of toxic perchlorate salts. In addition, the Mars regolith is devoid of soil organic matter (SOM) making plant cultivation for bio-regenerative life support and food production on Mars extremely challenging. The goal of this project is to design and develop scalable microbiological technologies and solutions to generate an organic and nutrient rich soil from Martian regolith. The guiding hypothesis of the proposed research is that the core metabolic processes of selected microbial consortia can be tuned to couple the production of a chemically diverse and stable SOM with the microbial reduction of perchlorate salts in Martian regolith. The specific objectives of the research include 1) experimental investigations of the extents and rates of perchlorate reduction by the selected microbial consortia under relevant Mars conditions using unsaturated and saturated regolith simulants, 2) characterization of the composition of the SOM and the bioavailable elements/nutrients that are generated from the microbial weathering of Mars regolith simulants using high resolution mass spectrometry coupled with liquid chromatography, and 3) demonstration of sustained seed germination and plant growth in the soil samples generated from the microbial weathering of Martian regolith simulants. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge and the development of new methods to enable the conversion of sterile and toxic soils to organic and nutrient rich soils that could support plant growth and crop cultivation. To implement the education and outreach activities of the project, the Principal Investigators (PIs) propose to develop and implement a Research Experience for Teachers (RET) program to support the training of eight high school teachers at Arizona State University (ASU). In addition, the PIs plan to integrate the findings from this research into existing graduate/undergraduate courses and public outreach activities at their respective institutions including a yearly Open Door public outreach event at ASU and STEM podcasts of the Florida Institute of Technology NPR affiliate station with a focus on topics related to bioweathering, microorganisms for space exploration, and plant growth and crop cultivation in Martian regolith. This project is jointly sponsored by the National Science Foundation, Office of Emerging Frontiers and Multidisciplinary Activities (EFMA) and the National Aeronautics and Space Administration (NASA).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类火星任务预计将于 2030 年代末进行。鉴于地球和火星之间的距离很远,确定可行的食物来源对于任务的成功至关重要。然而,火星土壤中含有的高氯酸盐浓度对大多数生命形式(包括植物和农作物)有毒。该项目的总体目标是探索开发和实施微生物催化的土壤形成过程,该过程可以去除火星风化层中的高氯酸盐,同时产生含有支持植物生长和栽培所需的有机碳和无机养分的土壤。为了推进这一目标,项目团队建议研究如何通过选定的微生物群落来调整火星土壤模拟物的生物风化,以产生能够支持火星上植物生长和农作物种植的可行土壤。该项目的成功完成将通过产生基础知识和识别微生物群落,将造福社会,这些微生物群落可以将火星风化层等贫瘠和有毒的土壤转化为可以维持植物生长和农作物种植的有机和营养丰富的土壤。通过教育和培训,还将为社会带来额外的好处,包括指导亚利桑那州立大学的一名博士后研究员、一名研究生和两名本科生,佛罗里达理工学院的一名研究生和一名本科生,以及亚利桑那大学的一名研究生。 火星风化层或火星表面材料是无菌的,含有高浓度的有毒高氯酸盐。此外,火星风化层缺乏土壤有机质(SOM),这使得火星上用于生物再生生命支持和粮食生产的植物种植极具挑战性。该项目的目标是设计和开发可扩展的微生物技术和解决方案,以利用火星风化层生成有机且营养丰富的土壤。该研究的指导性假设是,可以调整选定微生物群落的核心代谢过程,将化学多样性和稳定的 SOM 的生产与火星风化层中高氯酸盐的微生物还原结合起来。该研究的具体目标包括 1) 使用不饱和和饱和风化层模拟物在相关火星条件下对所选微生物群落的高氯酸盐还原程度和速率进行实验研究,2) 使用高分辨率质谱与液体结合来表征 SOM 的组成以及火星风化层模拟物的微生物风化产生的生物可利用元素/营养物 色谱法;3)演示火星风化层模拟物的微生物风化产生的土壤样品中种子的持续发芽和植物生长。该项目的成功完成有可能产生变革性影响,通过产生基础知识和开发新方法,将贫瘠和有毒的土壤转化为有机和营养丰富的土壤,支持植物生长和作物种植。为了实施该项目的教育和推广活动,首席研究员 (PI) 建议制定和实施教师研究经验 (RET) 计划,以支持亚利桑那州立大学 (ASU) 八名高中教师的培训。此外,PI 计划将这项研究的结果整合到各自机构现有的研究生/本科生课程和公共外展活动中,包括每年一次在亚利桑那州立大学举行的 Open Door 公共外展活动和佛罗里达理工学院 NPR 附属站的 STEM 播客,重点关注与生物风化、太空探索微生物以及火星风化层中的植物生长和农作物栽培相关的主题。该项目由美国国家科学基金会、新兴前沿和多学科活动办公室 (EFMA) 以及美国国家航空航天局 (NASA) 联合赞助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anca Delgado其他文献
Anca Delgado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anca Delgado', 18)}}的其他基金
Collaborative: Microbial chain elongation-mediated dehalogenation and carbon transformation
合作:微生物链延长介导的脱卤和碳转化
- 批准号:
2221805 - 财政年份:2022
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
相似海外基金
EFRI ELiS: Biosynthetic Additive Manufacturing of Living Building Materials
EFRI ELiS:活性建筑材料的生物合成增材制造
- 批准号:
2318057 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI ELiS : Carbon Sequestration and Coastal Resilience Through 3D Printed Reefs
EFRI ELiS:通过 3D 打印珊瑚礁实现碳封存和海岸恢复力
- 批准号:
2318123 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI ELiS: Living Microbial Sensors for Real-Time Monitoring of Pathogens in Wastewater
EFRI ELiS:用于实时监测废水中病原体的活微生物传感器
- 批准号:
2223678 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Continuing Grant
EFRI ELiS: Engineered Living Biofilms (ELBs) for critical mineral biomining and bioremediation applications
EFRI ELiS:用于关键矿物生物采矿和生物修复应用的工程活性生物膜 (ELB)
- 批准号:
2317512 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI ELiS: Biofilm-functionalized and -maintained, living infrastructure systems
EFRI ELiS:生物膜功能化和维护的生活基础设施系统
- 批准号:
2223756 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Continuing Grant
EFRI ELiS: Nano-Bio-Hybrid Living Systems for Airborne Biothreat Detection
EFRI ELiS:用于空气生物威胁检测的纳米生物混合生命系统
- 批准号:
2318093 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI ELiS: Desiccatable living cell-based sensors to monitor pollutants and pathogens in built environments
EFRI ELiS:基于可干燥活细胞的传感器,用于监测建筑环境中的污染物和病原体
- 批准号:
2318027 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI-EPSRC "ENG-EPSRC EFRI ELiS: Developing probiotic interventions to reduce the emergence and persistence of pathogens in built environments"
EFRI-EPSRC“ENG-EPSRC EFRI ELiS:开发益生菌干预措施以减少建筑环境中病原体的出现和持久性”
- 批准号:
EP/X026892/1 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Research Grant
EFRI ELiS: Engineering Fungal Platforms for Sustainable Biomining and Recovery of Valuable Metals from Electronic Wastes
EFRI ELiS:用于可持续生物采矿和从电子废物中回收有价金属的工程真菌平台
- 批准号:
2318122 - 财政年份:2023
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant
EFRI ELiS: Mechanically Adaptive Living Structural Materials
EFRI ELiS:机械自适应生命结构材料
- 批准号:
2223785 - 财政年份:2022
- 资助金额:
$ 188.65万 - 项目类别:
Standard Grant