A Graphical Species Distribution Model of life history connectivity and multi-scale co-existence of marine species
海洋物种生命史连通性和多尺度共存的图形物种分布模型
基本信息
- 批准号:2224702
- 负责人:
- 金额:$ 54.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
An understanding of the spatial distribution of marine species within ecologically and economically important regions is essential for testing fundamental ecological theory. It is also crucial for conservation efforts and to forecast potential impacts of climate change. Technologies are increasingly available and affordable for ecologists to sample the fine-scale distribution and habitat condition of ecological communities. Specifically, imaging systems can generate rich and integrated biological and environmental data at multiple spatial scales. However, there is a lack of statistical tools to analyze these multi-scale data, which limits our ability to extract critical information. This project will develop a statistical framework that encompasses the complex dynamics between marine ecological communities and spatial scales. The approach will improve our understanding of how biotic interactions and habitat factors shape the spatial patterns of marine communities, yet will be simple enough to contribute to broad ecological research and guide various actions of conservation and management.The project includes the following activities: develop, evaluate and quantify the performance of a graphical species distribution modeling (GSDM) within an R environment; employ the GSDM framework to leverage the rich multispecies, multiscale data inherent in imaging systems, and available to us from ongoing NSF-funded programs; and facilitate the co-development of an open-source R package by the marine ecological community to inform conservation and management decision making. This project will build capacity in marine biology through developing new species distribution modeling frameworks that overcome the computational challenge of incorporating data from sampling platforms with high spatial resolution. The frameworks will be coded in the R computing language to access the increasingly available, high resolution, multispecies data collected by image-based sampling systems. This approach, leveraging the most recent advances in Graphical and Bayesian network models, will improve the understanding of trophic interactions and life history connectivity within productive marine ecosystems. It will also further the development of generic ecological tools for the research, conservation, and management communities. Target audiences include graduates and the ecological research community of the University System of Maryland, and fisheries managers and agencies through the Goal Implementation Teams of the Chesapeake Bay Program. Feedback from community members will be engaged in a co-development process through online workshops, conference sessions, webinars, and dedicated websites (https://esc.cbl.umces.edu/gsdm).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解海洋物种在生态和经济重要区域内的空间分布对于检验基本生态理论至关重要。这对于保护工作和预测气候变化的潜在影响也至关重要。生态学家越来越多地获得和负担得起的技术来采样生态群落的细尺度分布和栖息地条件。具体而言,成像系统可以在多个空间尺度上生成丰富且综合的生物和环境数据。然而,缺乏统计工具来分析这些多尺度数据,这限制了我们提取关键信息的能力。该项目将制定一个统计框架,涵盖海洋生态群落和空间尺度之间的复杂动态。该方法将提高我们对生物相互作用和栖息地因素如何塑造海洋群落空间格局的理解,但将足够简单,有助于广泛的生态研究和指导各种保护和管理行动。采用GSDM框架来利用成像系统固有的丰富的多物种,多尺度数据,并从正在进行的NSF资助的计划中为我们提供;并促进海洋生态社区共同开发开源R包,为保护和管理决策提供信息。该项目将通过开发新的物种分布建模框架来建设海洋生物学能力,这些框架将克服将来自高空间分辨率采样平台的数据纳入计算方面的挑战。这些框架将用R计算语言编码,以访问基于图像的采样系统收集的越来越多的高分辨率多物种数据。这种方法,利用图形和贝叶斯网络模型的最新进展,将提高生产性海洋生态系统内的营养相互作用和生活史连接的理解。它还将进一步为研究、养护和管理界开发通用生态工具。目标受众包括马里兰州大学系统的毕业生和生态研究界,以及通过切萨皮克湾方案目标执行小组的渔业管理人员和机构。来自社区成员的反馈将通过在线研讨会、会议、网络研讨会和专用网站(https://esc.cbl.umces.edu/gsdm)参与共同开发过程。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Liang其他文献
The lipogenic LXR-SREBF1 signaling pathway controls cancer cell DNA repair and apoptosis and is a vulnerable point of malignant tumors for cancer therapy
脂肪生成LXR-SREBF1信号通路控制癌细胞DNA修复和凋亡,是恶性肿瘤治疗的薄弱环节
- DOI:
10.1038/s41418-020-0514-3 - 发表时间:
2020-03 - 期刊:
- 影响因子:12.4
- 作者:
Yang Bo;Zhang Bin;Cao Zhifei;Xu Xingdong;Huo Zihe;Zhang Pan;Xiang Shufen;Zhao Zhe;Lv Chunping;Meng Mei;Zhang Gaochuan;Dong Liang;Shi Shucheng;Yang Lan;Zhou Quansheng - 通讯作者:
Zhou Quansheng
EFFECT OF AC CURRENT ON CORROSION POTENTIAL OF Q235 STEEL
交流电流对Q235钢腐蚀电位的影响
- DOI:
10.3724/sp.j.1037.2011.00040 - 发表时间:
2011-08 - 期刊:
- 影响因子:2.3
- 作者:
Jiang Zitao;Du Yanxia;Dong Liang;Lu Minxu - 通讯作者:
Lu Minxu
Augmented Lagrangian Based Sparse Representation Method with Dictionary Updating for Image Deblurring(第一作者兼通讯作者是申请人指导的客座博士生)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Qiegen Liu;Dong Liang;Ying Song;Jianhuo Luo;Yuemin Zhu;Wenshu Li - 通讯作者:
Wenshu Li
Cloud Detection for Landsat Images Based on Semi-supervised TSVM
基于半监督TSVM的陆地卫星影像云检测
- DOI:
10.1007/s12524-017-0714-6 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Gensheng Hu;Wenxia Bao;Changchun Chen;Dong Liang;XiaoYi Li - 通讯作者:
XiaoYi Li
A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles
一种基于电偶极子和环形偶极子之间耦合的低损耗电磁感应透明(EIT)超材料
- DOI:
10.1039/c7ra11175d - 发表时间:
2017-12 - 期刊:
- 影响因子:3.9
- 作者:
Zhu Lei;Dong Liang;Guo Jing;Meng Fan Yi;He Xun Jun;Zhao Chun Hui;Wu Qun - 通讯作者:
Wu Qun
Dong Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
山果蝇物种亚群(Drosophila montium species-subgroup)求偶行为及求偶歌进化及其相关基因研究
- 批准号:31372187
- 批准年份:2013
- 资助金额:78.0 万元
- 项目类别:面上项目
相似海外基金
SG: Species Distribution Modeling on the A.I. frontier: Deep generative models for powerful, general and accessible SDM
SG:人工智能上的物种分布建模
- 批准号:
2329701 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Standard Grant
How will change the species composition of forest associations due to climate change? : Predicting spatiotemporal changes using a Species Distribution Models
气候变化将如何改变森林群落的物种组成?
- 批准号:
23K13986 - 财政年份:2023
- 资助金额:
$ 54.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Environmental and anthropogenic effects impact species abundance, density and distribution
环境和人为影响影响物种丰度、密度和分布
- 批准号:
2877834 - 财政年份:2023
- 资助金额:
$ 54.21万 - 项目类别:
Studentship
Novel Machine Learning Methods for Estimating the Spatial Distribution of Species
用于估计物种空间分布的新机器学习方法
- 批准号:
2878918 - 财政年份:2023
- 资助金额:
$ 54.21万 - 项目类别:
Studentship
Microcosm Experiments for Improved Species Distribution Models
改进物种分布模型的微观实验
- 批准号:
DP230102663 - 财政年份:2023
- 资助金额:
$ 54.21万 - 项目类别:
Discovery Projects
Testing species distribution models as a way to target sites for rare plant translocation
测试物种分布模型作为稀有植物易位目标地点的一种方法
- 批准号:
572560-2022 - 财政年份:2022
- 资助金额:
$ 54.21万 - 项目类别:
University Undergraduate Student Research Awards
Species composition, toxicity and distribution of azaspiracid-producing dinoflagellates in Japanese coastal waters
日本沿海产氮杂螺酸甲藻的种类组成、毒性和分布
- 批准号:
22H02416 - 财政年份:2022
- 资助金额:
$ 54.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Distribution survey and counter major for undescribed species of Lepismatidae in Japan
日本未描述的鳞龟科物种分布调查和反主要
- 批准号:
22K01008 - 财政年份:2022
- 资助金额:
$ 54.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrative species distribution models for extensive biodiversity datasets: insights and patterns from applications at large scales
广泛的生物多样性数据集的综合物种分布模型:大规模应用的见解和模式
- 批准号:
569404-2022 - 财政年份:2022
- 资助金额:
$ 54.21万 - 项目类别:
Postgraduate Scholarships - Doctoral
Linking theory and data to advance knowledge on species distribution
将理论和数据联系起来以增进对物种分布的了解
- 批准号:
RGPIN-2021-03943 - 财政年份:2022
- 资助金额:
$ 54.21万 - 项目类别:
Discovery Grants Program - Individual