Robust Shape Optimization for Artifical Blood Pumps: Hematological Design, Large-scale Transient Simulations, and Influence of Constitutive Models, Sensitivity Analysis

人工血泵的稳健形状优化:血液学设计、大规模瞬态模拟以及本构模型的影响、敏感性分析

基本信息

项目摘要

Analysis and design optimization of blood-handling mechanical devices, and in particular, miniature heart-assist blood pumps, presents a number of unique challenges. The micro-structural properties of blood affect both the choice of the design objectives, such as minimizing blood damage and clotting, and the choice of flow equations, which should account for the non-Newtonian nature of blood as a continuum. We propose to address, in the context of shape optimization of blood pumps, the issue of objective functions which can be correlated with the accumulation of blood damage along flow pathlines, and the influence of constitutive model (Newtonian, generalized Newtonian, and viscoelastic) on the optimal shapes. The entire optimization tool chain, based on analytically-derived sensitivities and adjoints, will be then subjected to sensitivity analysis with the help of automatic differentiation suitably adapted to the optimization procedure. It is expected that criteria for detecting inadequacies in constitutive modeling will be exemplified, e.g., by extreme sensitivity of the optimal shapes to model parameters. A sample shape optimization problem in an actual complex geometry of an axial blood pump is to be solved during this phase of the project.
血液处理机械设备的分析和设计优化,特别是微型心脏辅助血泵,提出了一些独特的挑战。血液的微观结构特性影响着设计目标的选择,如最大限度地减少血液损伤和凝血,以及流动方程的选择,这应该考虑血液作为一个连续体的非牛顿性质。在血泵形状优化的背景下,我们提出了可以与血液损伤沿流动路径积累相关的目标函数的问题,以及本构模型(牛顿、广义牛顿和粘弹性)对最优形状的影响。整个优化工具链基于分析得出的灵敏度和伴随项,然后在适合优化过程的自动微分的帮助下进行灵敏度分析。预计用于检测本构模型中的缺陷的标准将被举例说明,例如,通过最佳形状对模型参数的极端敏感性。在本项目的这一阶段,要解决轴流血泵实际复杂几何形状中的样本形状优化问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Marek Behr, Ph.D.其他文献

Professor Marek Behr, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Marek Behr, Ph.D.', 18)}}的其他基金

Drug-eluting coronary stents in stenosed arteries: medical investigation and computational modelling
狭窄动脉中的药物洗脱冠状动脉支架:医学研究和计算模型
  • 批准号:
    395712048
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometrically exact methods for fluid-structure interaction
流固耦合的几何精确方法
  • 批准号:
    249132206
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computation of Die Swell behind a Complex Profile Extrusion Die Using a Stabilized Finite Element Method for Various Thermoplastic Polymers
使用稳定有限元方法计算各种热塑性聚合物复杂轮廓挤出模具后面的模具膨胀
  • 批准号:
    184122738
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanistic modeling of restructuring behavior of colloidal aggregates in shear flows
剪切流中胶体聚集体重组行为的机理建模
  • 批准号:
    43393642
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
In-stent restenosis in coronary arteries - in silico investigations based on patient-specific data and meta modeling
冠状动脉支架内再狭窄 - 基于患者特定数据和元模型的计算机研究
  • 批准号:
    465213526
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

中医药协同SHAPE-T细胞治疗晚期胰腺癌的临床研究和免疫评价
  • 批准号:
    2024PT012
  • 批准年份:
    2024
  • 资助金额:
    17.5 万元
  • 项目类别:
    省市级项目

相似海外基金

HCC: Medium: Shape Optimization for the Design and Simulation of Electromagnetic Systems
HCC:介质:电磁系统设计和仿真的形状优化
  • 批准号:
    2313156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
  • 批准号:
    23K03659
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral Shape Optimization: Extremality and Curvature
谱形优化:极值和曲率
  • 批准号:
    2246537
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aerodynamic Shape Optimization of Hybrid Wing-Body Aircraft Constrained by Practical Design Requirements
受实际设计要求约束的翼身混合飞机气动外形优化
  • 批准号:
    547451-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Aerodynamic shape optimization framework for engine installation in an unconventional airframe
用于非常规机身中发动机安装的空气动力学形状优化框架
  • 批准号:
    RGPIN-2022-03586
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development and Implementation of Stability and Control Constraints for Unconventional Solar-Powered Hybrid Airship Shape Optimization
非常规太阳能混合飞艇形状优化的稳定性和控制约束的开发和实施
  • 批准号:
    575875-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Aerodynamic shape optimization framework for engine installation in an unconventional airframe
用于非常规机身中发动机安装的空气动力学形状优化框架
  • 批准号:
    DGECR-2022-00031
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
High-Order Unstructured Methods for Large Eddy Simulation and Shape Optimization
用于大涡模拟和形状优化的高阶非结构化方法
  • 批准号:
    RGPIN-2017-06773
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了