Geometrically exact methods for fluid-structure interaction

流固耦合的几何精确方法

基本信息

项目摘要

The methods developed in the proposed project will allow the solution of a class of fluid-structure-interaction problems via practical partitioned methods, which could up to now be solved only with monolithic methods. This can be achieved by guaranteeing that both the fluid and structure sides use an identical boundary description. For this purpose, methods based on Non-Uniform Rational B-Splines (NURBS) are used on both fluid and structural sides and coupled at the interface. Beyond that aspect, the separation of solvers for the fluid and the structure remains possible. Using partitioned approaches allows the integration of existing and specialized single-field solvers into an overall solution system. Unfortunately, different surface discretization in presents a challenge in such solvers. The necessary methods to project physical variables from one side to the other reduce the stability of partitioned approaches compared to more elaborate monolithic approaches. So far this problem has not been addressed satisfactorily. By applying approaches based on NURBS, an exact geometry of the wetted surface on both sides can be guaranteed and the transfer errors can be reduced or eliminated. The proposed concept is inspired by the isogeometric analysis (IGA), which has been gaining popularity in the structural analysis in recent years. Performing the numerical load analysis directly on the geometric formulation used during the design process is the main advantage of this method, and it is used in the suggested project on the structural side. Because the generation of suitable volume discretizations has been achieved in IGA only for relatively simple geometries, its application in fluid mechanics is limited. However, extending conventional methods with a NURBS-based boundary formulation can preserve many advantages of the method. This concept is followed in the NURBS-enhanced Finite-Element Method (NEFEM), which will be used in the proposed project on the fluid side. The project involves the development of the essential transfer methods. One intermediate step is the extension of existing methods while using a conventional method on the other, fluid or structural, side. The advantages of the developed methodology will be demonstrated on academic problems and on real-world applications. Advances in robustness and accuracy are expected by the incorporation of the innovative single-field solvers and by the reduction of errors in the transfer methods at the interface. In addition to the method development, a workshop is planned to support the scientific communication about current state of the art in the field of fluid-structure interaction. During this workshop, groundbreaking methods will be presented and discussed by international experts; the workshop will also provide a platform for young academics.
在提议的项目中开发的方法将允许通过实际的分割方法解决一类流体-结构-相互作用问题,这些问题到目前为止只能用整体方法解决。这可以通过保证流体侧和结构侧使用相同的边界描述来实现。为此,在流体侧和结构侧均采用基于非均匀有理b样条(NURBS)的方法,并在界面处进行耦合。除此之外,分离流体和结构的求解器仍然是可能的。使用分区方法可以将现有的和专门的单字段求解器集成到整个解决方案系统中。不幸的是,不同的表面离散给这种求解方法带来了挑战。将物理变量从一边投射到另一边的必要方法与更复杂的整体方法相比,降低了分区方法的稳定性。到目前为止,这个问题还没有得到令人满意的解决。通过应用基于NURBS的方法,可以保证湿表面两侧的精确几何形状,减少或消除传递误差。提出的概念是受到近年来在结构分析中越来越流行的等几何分析(IGA)的启发。直接对设计过程中使用的几何公式进行数值荷载分析是该方法的主要优点,并在建议的结构侧工程中得到了应用。由于IGA只能对相对简单的几何形状生成合适的体积离散化,因此它在流体力学中的应用受到限制。然而,将传统方法扩展为基于nurbs的边界公式可以保留该方法的许多优点。这一概念在nurbs增强的有限元法(NEFEM)中得到了遵循,该方法将在流体方面的拟议项目中使用。该项目涉及基本转移方法的发展。一个中间步骤是对现有方法的扩展,同时在另一方面(流体或结构)使用传统方法。所开发的方法的优势将在学术问题和现实世界的应用中得到证明。通过结合创新的单场求解器和减少界面传递方法中的误差,期望在鲁棒性和准确性方面取得进展。除了方法发展之外,还计划举办一个讲习班,以支持关于流固相互作用领域最新技术的科学交流。在本次研讨会期间,国际专家将介绍和讨论开创性的方法;研讨会还将为青年学者提供一个平台。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spline-based methods for fluid-structure interaction
基于样条的流固耦合方法
  • DOI:
    10.18154/rwth-2018-223770
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hosters
  • 通讯作者:
    Hosters
Fluid–structure interaction with NURBS-based coupling
  • DOI:
    10.1016/j.cma.2018.01.003
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    N. Hosters;Jan Helmig;Atanas Stavrev;M. Behr;S. Elgeti
  • 通讯作者:
    N. Hosters;Jan Helmig;Atanas Stavrev;M. Behr;S. Elgeti
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Marek Behr, Ph.D.其他文献

Professor Marek Behr, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Marek Behr, Ph.D.', 18)}}的其他基金

Drug-eluting coronary stents in stenosed arteries: medical investigation and computational modelling
狭窄动脉中的药物洗脱冠状动脉支架:医学研究和计算模型
  • 批准号:
    395712048
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computation of Die Swell behind a Complex Profile Extrusion Die Using a Stabilized Finite Element Method for Various Thermoplastic Polymers
使用稳定有限元方法计算各种热塑性聚合物复杂轮廓挤出模具后面的模具膨胀
  • 批准号:
    184122738
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanistic modeling of restructuring behavior of colloidal aggregates in shear flows
剪切流中胶体聚集体重组行为的机理建模
  • 批准号:
    43393642
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Robust Shape Optimization for Artifical Blood Pumps: Hematological Design, Large-scale Transient Simulations, and Influence of Constitutive Models, Sensitivity Analysis
人工血泵的稳健形状优化:血液学设计、大规模瞬态模拟以及本构模型的影响、敏感性分析
  • 批准号:
    25250102
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
In-stent restenosis in coronary arteries - in silico investigations based on patient-specific data and meta modeling
冠状动脉支架内再狭窄 - 基于患者特定数据和元模型的计算机研究
  • 批准号:
    465213526
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

发展基于Exact Muffin-Tin轨道的第一性原理量子输运方法
  • 批准号:
    11874265
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Exposome in Rheumatoid Arthritis and Systemic Lupus Erythematosus: EXACT Network Planning
类风湿关节炎和系统性红斑狼疮的暴露组:精确的网络规划
  • 批准号:
    10869439
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
  • 批准号:
    RGPIN-2019-05691
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Molecules in Classical and Quantized Fields: Developing Time-dependent Density Functional and Exact Factorization Methods for Electrons, Ions, and Photons
经典和量子化领域中的分子:开发电子、离子和光子的时间相关密度泛函和精确分解方法
  • 批准号:
    2154829
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
  • 批准号:
    RGPIN-2019-05691
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
  • 批准号:
    RGPIN-2019-05691
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
  • 批准号:
    RGPIN-2019-05691
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
  • 批准号:
    DGECR-2019-00328
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Studies on general and nearly exact statistical methods for monotone missing data under nonnormality and their applications
非正态下单调缺失数据的通用准精确统计方法及其应用研究
  • 批准号:
    19K14595
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了