CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
基本信息
- 批准号:2224843
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network embedding is to learn a low-dimensional representation to facilitate network analytics applications including node classification and network visualization. This project is to investigate a novel direction to explore how human knowledge could enhance network embedding and how the results could be better understood by human beings. Human knowledge represents any context information or prior knowledge that could be correlated to the learned embedding in this context. The successful outcome of this multidisciplinary research will lead to advances in enabling domain experts to interactively and easily analyze big network data with human knowledge, and thus positively impacting the overall value of various information systems. The integrated data science education program is to train students with crucial but highly unavailable data analytics technologies, to attract members of underrepresented groups to careers in engineering, and to retain members of those groups. The research goal of this project is to develop a human-centric framework for modeling and incorporating human knowledge in network embedding, tackling data challenges brought by big networks, as well as enabling interpretation and interaction of network embedding results. This project develops a series of network embedding models and algorithms, different from data-driven approaches, to analyze network data from various aspects. Multi-view learning and deep structured frameworks are investigated to integrate three types of human knowledge from the node-, edge- and community-level into a unified framework. Given the fact that real-world networks could contain heterogeneous, large-scale and dynamic human knowledge, corresponding solutions are developed to handle the problems. To facilitate human understanding of the research results, this project develops global and local interpretation algorithms to explain network embedding and interactive learning algorithms to integrate user feedback.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络嵌入是学习一种低维表示,以促进网络分析应用,包括节点分类和网络可视化。该项目旨在研究一个新的方向,探索人类知识如何增强网络嵌入以及人类如何更好地理解结果。人类知识表示可以与在该上下文中学习的嵌入相关的任何上下文信息或先验知识。这一多学科研究的成功成果将推动领域专家利用人类知识交互式地轻松分析大网络数据,从而对各种信息系统的整体价值产生积极影响。综合数据科学教育计划旨在培养学生掌握关键但高度不可用的数据分析技术,吸引代表性不足的群体的成员从事工程职业,并留住这些群体的成员。该项目的研究目标是开发一个以人为中心的框架,用于在网络嵌入中建模和整合人类知识,解决大网络带来的数据挑战,以及实现网络嵌入结果的解释和交互。该项目开发了一系列不同于数据驱动方法的网络嵌入模型和算法,从多个方面分析网络数据。研究了多视图学习和深度结构化框架,以将节点、边缘和社区级别的三种类型的人类知识整合到一个统一的框架中。鉴于现实世界的网络可能包含异构的,大规模的和动态的人类知识,相应的解决方案被开发来处理的问题。为了促进人类对研究结果的理解,该项目开发了全球和本地解释算法来解释网络嵌入和交互式学习算法,以整合用户反馈。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xia Hu其他文献
两档输电线路的精细化建模与自由振动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Xianzhong Xie;Xia Hu;Jian Peng;Zhiqian Wang - 通讯作者:
Zhiqian Wang
The lagged effects of environmentally relevant zinc on non-specific immunity in zebrafish
环境相关锌对斑马鱼非特异性免疫的滞后影响
- DOI:
10.1016/j.chemosphere.2018.09.050 - 发表时间:
2019 - 期刊:
- 影响因子:8.8
- 作者:
Si Lan Fang;Wang Cheng Cheng;Guo Sai Nan;Zheng Jia Lang;Xia Hu - 通讯作者:
Xia Hu
Advanced forecasting of career choices for college students based on campus big data
基于校园大数据的大学生职业选择高级预测
- DOI:
10.1007/s11704-017-6498-6 - 发表时间:
2018-05 - 期刊:
- 影响因子:4.2
- 作者:
Nie Min;Yang Lei;Sun Jun;Su Han;Xia Hu;Lian Defu;Yan Kai - 通讯作者:
Yan Kai
Soil Open Pore Structure Regulates Soil Organic Carbon Fractions of soil Aggregates under Simulated Freeze‑Thaw Cycles as Determined by X‑ray Computed Tomography
X 射线计算机断层扫描确定的模拟冻融循环下土壤开孔结构调节土壤团聚体的土壤有机碳分数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Yi;Xia Hu - 通讯作者:
Xia Hu
Diversity and Distribution of Xylophagous Beetles from Pinus thunbergii Parl. and Pinus massoniana Lamb. Infected by Pine Wood Nematode
黑松食木甲虫的多样性和分布。
- DOI:
10.3390/f12111549 - 发表时间:
2021-11 - 期刊:
- 影响因子:2.9
- 作者:
Xu Chu;Qiuyu Ma;Meijiao Yang;Guoqiang Li;Jinyan Liu;Guanghong Liang;Songqing Wu;Rong Wang;Feiping Zhang;Xia Hu - 通讯作者:
Xia Hu
Xia Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xia Hu', 18)}}的其他基金
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
- 批准号:
1750074 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
- 批准号:
1718840 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: III: Novel Embedding Algorithms for Large-Scale and Complex Attributed Networks
CRII:III:大规模和复杂属性网络的新颖嵌入算法
- 批准号:
1657196 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HumanIC: Human - Centric Indoor Climate for Healthcare Facilities
HumanIC:医疗设施以人为本的室内气候
- 批准号:
EP/Z000017/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
- 批准号:
10109582 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Intersubjective AI-driven multimodal interaction for advanced user-centric human robot collaborative applications (Jarvis)
主体间人工智能驱动的多模式交互,用于以用户为中心的高级人类机器人协作应用程序 (Jarvis)
- 批准号:
10099311 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Human-Centric Autonomy from Agentic Dynamics
来自代理动力学的以人为中心的自治
- 批准号:
23H03455 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
HXAI-VDI: Human-centric XAI enabled Vulnerability Detection and Identification in the Internet of Things (IoT)
HXAI-VDI:以人为中心的 XAI 支持物联网 (IoT) 中的漏洞检测和识别
- 批准号:
10077830 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
CAREER: Scaling up Brain Circuit Reconstruction with Human-centric Machine Learning
职业:利用以人为本的机器学习扩大脑回路重建
- 批准号:
2239688 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Together at Last: Perception and Learning for Collaborative Robots Operating in Human-Centric Environments
最终在一起:在以人为中心的环境中运行的协作机器人的感知和学习
- 批准号:
RGPIN-2018-06524 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Safe and Efficient Robot Learning in Human-Centric Environments
以人为本的环境中安全高效的机器人学习
- 批准号:
RGPIN-2021-04152 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
- 批准号:
2208794 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A Study on Intelligent and Secure Human-centric 6G Network Orchestration
以人为中心的智能安全6G网络编排研究
- 批准号:
22K17878 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




