Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
基本信息
- 批准号:2310260
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Neural Network (DNN) generalization is a challenging problem. Many DNNs do not remain predictive when the distribution of data changes or there are small disturbances to their input. A common reason for this behavior is “shortcut learning”, in which the DNN learns to make decisions based on relationships observed in the data, but that are not causal. These decisions fail when the model is transferred to real-world scenarios because the network has latched onto spurious correlations. This project investigates how to identify and mitigate shortcut learning in DNNs. A successful outcome of this research will lead to advances in theoretical understanding, as well as robust and generalizable DNN algorithms that avoid shortcuts. The education program integrates machine learning, industrial engineering, and health informatics to train students with essential data analytics tools in information systems, as well as to attract, mentor and retain members from underrepresented groups.The primary goal of this project is to systematically investigate the identification and mitigation of shortcut features from a data-centric perspective to facilitate generalization in deep learning. The developed data-centric mechanisms could be directly adopted in real-world data analytics systems to mitigate the drawbacks of shortcut learning. The project studies shortcut identification and detection at different levels, including instance, feature, and task levels, and then performs shortcut mitigation through data augmentation and training regularization. The project also demonstrates how the proposed research innovations could be embedded into two real DNN-based medical informatics systems. The proposed framework uncovers intrinsic properties of shortcut learning by calibrating shortcut features across different types of distribution shifts, and should support both researchers and practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)泛化是一个具有挑战性的问题。许多DNN在数据分布发生变化或其输入存在小干扰时无法保持预测性。这种行为的一个常见原因是“捷径学习”,其中DNN学习根据数据中观察到的关系做出决策,但这些关系不是因果关系。当模型被转移到现实世界的场景中时,这些决策就会失败,因为网络已经锁定了虚假的相关性。该项目研究如何识别和减轻DNN中的捷径学习。这项研究的成功结果将导致理论理解的进步,以及避免捷径的鲁棒和可推广的DNN算法。该教育项目整合了机器学习、工业工程和健康信息学,旨在培养学生掌握信息系统中的基本数据分析工具,并吸引、指导和留住来自代表性不足群体的成员。该项目的主要目标是从以数据为中心的角度系统地研究识别和缓解捷径特征,以促进深度学习中的泛化。开发的以数据为中心的机制可以直接应用于现实世界的数据分析系统,以减轻捷径学习的缺点。该项目研究了不同级别的快捷方式识别和检测,包括实例,功能和任务级别,然后通过数据增强和训练正则化来执行快捷方式缓解。该项目还展示了拟议的研究创新如何嵌入到两个真实的基于DNN的医疗信息系统中。建议的框架通过校准不同类型的分布变化的捷径特征,揭示了捷径学习的内在属性,并应支持研究人员和从业人员。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xia Hu其他文献
两档输电线路的精细化建模与自由振动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Xianzhong Xie;Xia Hu;Jian Peng;Zhiqian Wang - 通讯作者:
Zhiqian Wang
The lagged effects of environmentally relevant zinc on non-specific immunity in zebrafish
环境相关锌对斑马鱼非特异性免疫的滞后影响
- DOI:
10.1016/j.chemosphere.2018.09.050 - 发表时间:
2019 - 期刊:
- 影响因子:8.8
- 作者:
Si Lan Fang;Wang Cheng Cheng;Guo Sai Nan;Zheng Jia Lang;Xia Hu - 通讯作者:
Xia Hu
Advanced forecasting of career choices for college students based on campus big data
基于校园大数据的大学生职业选择高级预测
- DOI:
10.1007/s11704-017-6498-6 - 发表时间:
2018-05 - 期刊:
- 影响因子:4.2
- 作者:
Nie Min;Yang Lei;Sun Jun;Su Han;Xia Hu;Lian Defu;Yan Kai - 通讯作者:
Yan Kai
Soil Open Pore Structure Regulates Soil Organic Carbon Fractions of soil Aggregates under Simulated Freeze‑Thaw Cycles as Determined by X‑ray Computed Tomography
X 射线计算机断层扫描确定的模拟冻融循环下土壤开孔结构调节土壤团聚体的土壤有机碳分数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Yi;Xia Hu - 通讯作者:
Xia Hu
Diversity and Distribution of Xylophagous Beetles from Pinus thunbergii Parl. and Pinus massoniana Lamb. Infected by Pine Wood Nematode
黑松食木甲虫的多样性和分布。
- DOI:
10.3390/f12111549 - 发表时间:
2021-11 - 期刊:
- 影响因子:2.9
- 作者:
Xu Chu;Qiuyu Ma;Meijiao Yang;Guoqiang Li;Jinyan Liu;Guanghong Liang;Songqing Wu;Rong Wang;Feiping Zhang;Xia Hu - 通讯作者:
Xia Hu
Xia Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xia Hu', 18)}}的其他基金
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
- 批准号:
2224843 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
- 批准号:
1750074 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
- 批准号:
1718840 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII: III: Novel Embedding Algorithms for Large-Scale and Complex Attributed Networks
CRII:III:大规模和复杂属性网络的新颖嵌入算法
- 批准号:
1657196 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant