CRII: III: Novel Embedding Algorithms for Large-Scale and Complex Attributed Networks
CRII:III:大规模和复杂属性网络的新颖嵌入算法
基本信息
- 批准号:1657196
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Attributed networks are ubiquitous in a variety of real-world systems such as social media, academic networks, health care systems and enterprise systems. Attributed networks differ from traditional networks where only nodes and links are represented, as the nodes in these networks are also associated with a rich set of attributes. For example, in academic networks, researchers collaborate with each other and are distinct from others by their unique research interests or profiles; in social networks, users interact and communicate with others and also post some personalized contents. As an effective computational tool in analyzing networks, network embedding is a technique for learning a low-dimensional representation for each node in the network. Such a representation plays an essential role in supporting a variety of network analysis applications including community detection, link prediction and network visualization. While most existing studies focused on simple network embedding, the aim of this project is to develop novel embedding algorithms for attributed networks by tackling challenges brought by large-scale and complex attributed network data. The results of this project will be a new class of theoretical as well as practical network embedding methods to analyze large and complex network data. The developed algorithms will be flexible to be adapted for facilitating various industrial applications in Social Computing, Health Informatics and Enterprise Systems. This project will also develop a new curriculum that incorporates the proposed research. In addition, this project will allow the PI to continue the ongoing efforts of providing research opportunities to undergraduate students, female and underrepresented students.The goal of this project is to develop efficient and effective network embedding algorithms to deal with large-scale attributed networks that contain complex network interactions. Given data from open networked information systems, this research will address the problem of attributed network analytics from two perspectives, i.e., scalable network embedding and leveraging network interactions. Specifically, this project aims to achieve the goal through two primary research objectives: (1) performing efficient embedding on large-scale attributed networks by developing two formulations from heterogeneous information networks and multi-view learning perspectives, as well as their corresponding fast optimization algorithms; and (2) transforming existing network embedding algorithms by leveraging social theories, e.g., social status analysis and social identity theory. The project web site (http://faculty.cs.tamu.edu/xiahu/projects-crii.html) provides access to further information and results, including publications, software, datasets and curriculum materials.
属性网络在社会媒体、学术网络、医疗保健系统和企业系统等各种现实世界系统中无处不在。属性网络与仅表示节点和链接的传统网络不同,因为这些网络中的节点也与一组丰富的属性相关联。例如,在学术网络中,研究人员相互合作,并因其独特的研究兴趣或概况而与其他人区别开来;在社交网络中,用户与他人进行互动和交流,也发布一些个性化的内容。网络嵌入是一种学习网络中每个节点的低维表示的技术,是分析网络的一种有效的计算工具。这种表示在支持社区检测、链路预测和网络可视化等各种网络分析应用中起着至关重要的作用。现有的研究大多集中在简单的网络嵌入上,而本项目的目标是通过应对大规模、复杂的属性网络数据带来的挑战,开发新的属性网络嵌入算法。该项目的成果将为分析大型复杂网络数据提供一种新的理论和实用的网络嵌入方法。开发的算法将是灵活的,以适应促进各种工业应用在社会计算,健康信息和企业系统。该项目还将开发一个包含拟议研究的新课程。此外,该项目将使PI能够继续努力,为本科生、女性和代表性不足的学生提供研究机会。该项目的目标是开发高效和有效的网络嵌入算法,以处理包含复杂网络交互的大规模属性网络。给定来自开放网络信息系统的数据,本研究将从两个角度解决属性网络分析的问题,即可扩展的网络嵌入和利用网络交互。具体而言,本项目旨在通过两个主要研究目标来实现这一目标:(1)通过开发异构信息网络和多视图学习视角的两种公式及其相应的快速优化算法,在大规模属性网络上实现高效嵌入;(2)利用社会理论,如社会地位分析和社会认同理论,改造现有的网络嵌入算法。项目网站(http://faculty.cs.tamu.edu/xiahu/projects-crii.html)提供更多信息和结果,包括出版物、软件、数据集和课程材料。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xia Hu其他文献
两档输电线路的精细化建模与自由振动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Xianzhong Xie;Xia Hu;Jian Peng;Zhiqian Wang - 通讯作者:
Zhiqian Wang
The lagged effects of environmentally relevant zinc on non-specific immunity in zebrafish
环境相关锌对斑马鱼非特异性免疫的滞后影响
- DOI:
10.1016/j.chemosphere.2018.09.050 - 发表时间:
2019 - 期刊:
- 影响因子:8.8
- 作者:
Si Lan Fang;Wang Cheng Cheng;Guo Sai Nan;Zheng Jia Lang;Xia Hu - 通讯作者:
Xia Hu
Advanced forecasting of career choices for college students based on campus big data
基于校园大数据的大学生职业选择高级预测
- DOI:
10.1007/s11704-017-6498-6 - 发表时间:
2018-05 - 期刊:
- 影响因子:4.2
- 作者:
Nie Min;Yang Lei;Sun Jun;Su Han;Xia Hu;Lian Defu;Yan Kai - 通讯作者:
Yan Kai
Soil Open Pore Structure Regulates Soil Organic Carbon Fractions of soil Aggregates under Simulated Freeze‑Thaw Cycles as Determined by X‑ray Computed Tomography
X 射线计算机断层扫描确定的模拟冻融循环下土壤开孔结构调节土壤团聚体的土壤有机碳分数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Yi;Xia Hu - 通讯作者:
Xia Hu
Diversity and Distribution of Xylophagous Beetles from Pinus thunbergii Parl. and Pinus massoniana Lamb. Infected by Pine Wood Nematode
黑松食木甲虫的多样性和分布。
- DOI:
10.3390/f12111549 - 发表时间:
2021-11 - 期刊:
- 影响因子:2.9
- 作者:
Xu Chu;Qiuyu Ma;Meijiao Yang;Guoqiang Li;Jinyan Liu;Guanghong Liang;Songqing Wu;Rong Wang;Feiping Zhang;Xia Hu - 通讯作者:
Xia Hu
Xia Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xia Hu', 18)}}的其他基金
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
- 批准号:
2310260 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
- 批准号:
2224843 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
- 批准号:
1750074 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
- 批准号:
1718840 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Identification of novel type III IFN regulatory pathways
新型 III 型干扰素调节途径的鉴定
- 批准号:
10714232 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
- 批准号:
479527 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Operating Grants
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
- 批准号:
10568744 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
RNA polymerase III-related leukodystrophy: Understanding disease pathogenesis and developing novel therapeutic approaches using murine models
RNA 聚合酶 III 相关脑白质营养不良:了解疾病发病机制并利用小鼠模型开发新的治疗方法
- 批准号:
472825 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Operating Grants
Characterization of a Novel E. coli Type III Secretion System Associated with Increased Patient Mortality
与患者死亡率增加相关的新型大肠杆菌 III 型分泌系统的表征
- 批准号:
10506437 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Targeting aldose reductase: A Phase IIb/III trial for the novel use of Epalrestat to treat Congenital Disorders of Glycosylation (PMM2-CDG)
靶向醛糖还原酶:依帕司他新用途治疗先天性糖基化障碍 (PMM2-CDG) 的 IIb/III 期试验
- 批准号:
10480649 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SemiSynBio-III: Novel Memory Devices for High-Density Data Storage and In-Memory Computing Based on Integrated Synthetic DNA-Semiconductors
SemiSynBio-III:基于集成合成 DNA 半导体的用于高密度数据存储和内存计算的新型存储设备
- 批准号:
2227484 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Characterization of a Novel E. coli Type III Secretion System Associated with Increased Patient Mortality
与患者死亡率增加相关的新型大肠杆菌 III 型分泌系统的表征
- 批准号:
10643910 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Targeting aldose reductase: A Phase IIb/III trial for the novel use of Epalrestat to treat Congenital Disorders of Glycosylation (PMM2-CDG)
靶向醛糖还原酶:依帕司他新用途治疗先天性糖基化障碍 (PMM2-CDG) 的 IIb/III 期试验
- 批准号:
10616658 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:














{{item.name}}会员




