CRII: III: Novel Embedding Algorithms for Large-Scale and Complex Attributed Networks

CRII:III:大规模和复杂属性网络的新颖嵌入算法

基本信息

  • 批准号:
    1657196
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

Attributed networks are ubiquitous in a variety of real-world systems such as social media, academic networks, health care systems and enterprise systems. Attributed networks differ from traditional networks where only nodes and links are represented, as the nodes in these networks are also associated with a rich set of attributes. For example, in academic networks, researchers collaborate with each other and are distinct from others by their unique research interests or profiles; in social networks, users interact and communicate with others and also post some personalized contents. As an effective computational tool in analyzing networks, network embedding is a technique for learning a low-dimensional representation for each node in the network. Such a representation plays an essential role in supporting a variety of network analysis applications including community detection, link prediction and network visualization. While most existing studies focused on simple network embedding, the aim of this project is to develop novel embedding algorithms for attributed networks by tackling challenges brought by large-scale and complex attributed network data. The results of this project will be a new class of theoretical as well as practical network embedding methods to analyze large and complex network data. The developed algorithms will be flexible to be adapted for facilitating various industrial applications in Social Computing, Health Informatics and Enterprise Systems. This project will also develop a new curriculum that incorporates the proposed research. In addition, this project will allow the PI to continue the ongoing efforts of providing research opportunities to undergraduate students, female and underrepresented students.The goal of this project is to develop efficient and effective network embedding algorithms to deal with large-scale attributed networks that contain complex network interactions. Given data from open networked information systems, this research will address the problem of attributed network analytics from two perspectives, i.e., scalable network embedding and leveraging network interactions. Specifically, this project aims to achieve the goal through two primary research objectives: (1) performing efficient embedding on large-scale attributed networks by developing two formulations from heterogeneous information networks and multi-view learning perspectives, as well as their corresponding fast optimization algorithms; and (2) transforming existing network embedding algorithms by leveraging social theories, e.g., social status analysis and social identity theory. The project web site (http://faculty.cs.tamu.edu/xiahu/projects-crii.html) provides access to further information and results, including publications, software, datasets and curriculum materials.
归因网络在各种现实世界中无处不在,例如社交媒体,学术网络,医疗保健系统和企业系统。属性网络与仅表示节点和链接的传统网络不同,因为这些网络中的节点也与一组丰富的属性相关联。例如,在学术网络中,研究人员彼此合作,并通过其独特的研究兴趣或个人资料与众不同;在社交网络中,用户与他人进行互动和通信,并发布一些个性化内容。作为分析网络的有效计算工具,网络嵌入是一种学习网络中每个节点的低维表示的技术。这样的表示在支持各种网络分析应用程序(包括社区检测,链接预测和网络可视化)中起着至关重要的作用。尽管大多数专注于简单网络嵌入的研究,但该项目的目的是通过解决由大规模且复杂的属性网络数据带来的挑战来开发归因网络的新型嵌入算法。该项目的结果将是一类新的理论和实际网络嵌入方法,以分析大型和复杂的网络数据。开发的算法将灵活地适应社会计算,健康信息学和企业系统中的各种工业应用。该项目还将开发一个新的课程,结合了拟议的研究。此外,该项目将使PI继续为本科生,女性和代表性不足的学生提供研究机会的持续努力。该项目的目的是开发高效有效的网络嵌入算法,以处理包含复杂网络交互的大型网络。从开放网络信息系统中进行的数据,本研究将从两个角度(即可扩展网络嵌入和利用网络交互)解决属性网络分析的问题。具体而言,该项目旨在通过两个主要的研究目标来实现目标:(1)通过从异质信息网络和多视图学习观点开发两个配方,以及它们相应的快速优化算法,从而在大规模归因网络上执行有效嵌入; (2)通过利用社会理论,例如社会地位分析和社会身份理论来改变现有的网络嵌入算法。项目网站(http://faculty.cs.tamu.edu/xiahu/projects-crii.html)可访问更多信息和结果,包括出版物,软件,数据集和课程材料。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Expert Cognition for Attributed Network Embedding
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia Hu其他文献

Effects of nutrient input on soil nitrogen cycle in winter in the Alpine Zone
高寒地区冬季养分输入对土壤氮循环的影响
Differentially Private Counterfactuals via Functional Mechanism
通过功能机制实现差分隐私反事实
  • DOI:
    10.48550/arxiv.2208.02878
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Yang;Qizhang Feng;Kaixiong Zhou;Jiahao Chen;Xia Hu
  • 通讯作者:
    Xia Hu
Electrochemical Aptasensor for Label-Free Detection of Protein Based on Gold Nanoparticle Involved Self-Assembly
基于金纳米粒子自组装的电化学适体传感器用于无标记检测蛋白质
  • DOI:
    10.4028/www.scientific.net/amm.310.177
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Songbai Zhang;Bing Zhang;Qian Liu;Xia Hu;Liying Zheng;Xue‐Wen Liu;J. Lu;Hui Zhou;Shi
  • 通讯作者:
    Shi
Measuring sentence similarity from different aspects
从不同方面衡量句子相似度
Learning to recommend questions based on public interest
学会根据公众兴趣推荐问题
  • DOI:
    10.1145/2063576.2063882
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Wang;Xia Hu;Zhoujun Li;Wen;Biyun Hu
  • 通讯作者:
    Biyun Hu

Xia Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia Hu', 18)}}的其他基金

Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
  • 批准号:
    2224843
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CAREER: Human-Centric Big Network Embedding
职业:以人为本的大网络嵌入
  • 批准号:
    1750074
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: A General Feature Learning Framework for Dynamic Attributed Networks
III:小:协作研究:动态属性网络的通用特征学习框架
  • 批准号:
    1718840
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
  • 批准号:
    52370204
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
  • 批准号:
    82370622
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
  • 批准号:
    42307492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
  • 批准号:
    42377264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
  • 批准号:
    10551184
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Mechanistic Study of Inspiratory Training in Childhood Asthma
儿童哮喘吸气训练机制研究
  • 批准号:
    10637048
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
  • 批准号:
    10677051
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
  • 批准号:
    10679988
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Immunomodulatory effects of desmoglein 3 chimeric autoantibody receptor T cells (DSG3-CAART) in mucosal pemphigus vulgaris
桥粒芯糖蛋白 3 嵌合自身抗体受体 T 细胞 (DSG3-CAART) 对粘膜寻常型天疱疮的免疫调节作用
  • 批准号:
    10679911
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了