NSF-AoF: SOLID: System-wide Operation via Learning In-device Dissimilarities

NSF-AoF:SOLID:通过学习设备内差异进行系统范围的操作

基本信息

  • 批准号:
    2225555
  • 负责人:
  • 金额:
    $ 49.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Cellular communication systems continue to incorporate new multiple-antenna technologies. In particular, third, fourth and fifth generation cellular systems saw advancements in the use of multiple antennas at the base-station infrastructure and multiple antennas in the devices. A main application of these antennas was to support multiple-input multiple-output (MIMO) communication, which is known to increase spectral efficiency and thus the data rates that can be achieved by devices in a given bandwidth. The numbers of antennas and the ways the antennas are used can vary across device models even from the same manufacturer. At the same time, the types of devices supported in cellular systems is growing beyond smartphones to include other highly mobile platforms like aerial vehicles, automobiles, and robots. The differences in the hardware between devices, coupled with the high device mobility, makes it challenging to configure the antennas to provide MIMO communication with the highest performance. This project develops machine learning-inspired solutions to empower devices to learn optimal configurations collaboratively. System-wide Operation via Learning In-device Dissimilarities is a cooperation among experts in wireless communications at North Carolina State University (NC State) and Tampere University (TAU). The overall objective of the proposal is to employ machine-learning-assisted collaborative solutions for MIMO beam prediction and codebook optimization in a large-scale dynamic system. The key challenge of such networks is the extreme diversity of the devices’ hardware (e.g., antenna designs and configurations). The existing distributed ML approaches do not explicitly include this type of client heterogeneity and do not fully support the temporal and spatial heterogeneity of data, network resources, and deployments. The project team will develop a novel integrated-learning and wireless-networking framework, which will enable the design and optimization of advanced MIMO beam-management solutions specifically tailored to the highly diverse and dynamic system. This project will result in new algorithms for collaborative device-centric beam management for 5G+/pre-6G MIMO communications in non-stationary environments with highly mobile and heterogeneous agents. The specific technical contributions occur in several directions: (a) Distributed user-centric learning for optimizing codebook-based MIMO communications; (b) Novel representation of device heterogeneity in an ML-friendly way; and (c) Network-resource optimization to facilitate distributed learning. The immediate impact will be improved communication efficiency in 5G+/pre-6G networks. The longer-term impact will be the establishment of the core principles for designing fast and reliable methods of distributed ML training deployed over wireless systems with diverse hardware and resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蜂窝通信系统继续结合新的多天线技术。特别是,第三代、第四代和第五代蜂窝系统在基站基础设施中使用多个天线以及在设备中使用多个天线方面取得了进步。这些天线的主要应用是支持多输入多输出(MIMO)通信,这是已知的,以提高频谱效率,从而在给定带宽的设备可以实现的数据速率。天线的数量和天线的使用方式可能会因设备型号而异,即使来自同一制造商。与此同时,蜂窝系统中支持的设备类型正在从智能手机扩展到其他高度移动的平台,如飞行器、汽车和机器人。设备之间的硬件差异,加上设备的高移动性,使得配置天线以提供具有最高性能的MIMO通信具有挑战性。该项目开发了受机器学习启发的解决方案,使设备能够协作学习最佳配置。通过学习设备内的差异进行系统范围的操作是北卡罗来纳州州立大学(NC State)和坦佩雷大学(TAU)的无线通信专家之间的合作。该提案的总体目标是在大规模动态系统中采用机器学习辅助的协作解决方案进行MIMO波束预测和码本优化。这种网络的关键挑战是设备硬件的极端多样性(例如,天线设计和配置)。现有的分布式ML方法没有明确包括这种类型的客户端异构性,并且不完全支持数据、网络资源和部署的时间和空间异构性。该项目团队将开发一个新的集成学习和无线网络框架,这将使设计和优化先进的MIMO波束管理解决方案,专门针对高度多样化和动态的系统。该项目将为具有高度移动的和异构代理的非静止环境中的5G+/6 G前MIMO通信提供以设备为中心的协作波束管理的新算法。具体的技术贡献出现在几个方向上:(a)分布式以用户为中心的学习,用于优化基于码本的MIMO通信;(B)以ML友好的方式对设备异构性进行新的表示;以及(c)网络资源优化,以促进分布式学习。直接影响将是提高5G+/6 G前网络的通信效率。长期影响将是建立设计快速可靠的分布式机器学习培训方法的核心原则,这些方法部署在具有不同硬件和资源的无线系统上。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning-Based Joint User Scheduling and Link Configuration in Millimeter-Wave Networks
Dynamic Network-Assisted D2D-Aided Coded Distributed Learning
  • DOI:
    10.1109/tcomm.2023.3259442
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Nikita Zeulin;O. Galinina;N. Himayat;Sergey D. Andreev;R. Heath
  • 通讯作者:
    Nikita Zeulin;O. Galinina;N. Himayat;Sergey D. Andreev;R. Heath
Multi-Armed Bandit for Link Configuration in Millimeter-Wave Networks: An Approach for Solving Sequential Decision-Making Problems
毫米波网络中链路配置的多臂老虎机:一种解决顺序决策问题的方法
  • DOI:
    10.1109/mvt.2023.3237940
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Zhang, Yi;Heath, Robert W.
  • 通讯作者:
    Heath, Robert W.
Linear Polarization Optimization for Wideband MIMO Systems With Reconfigurable Arrays
Dynamic Metasurface Antennas for Energy-Efficient MISO Communications
用于节能 MISO 通信的动态超表面天线
  • DOI:
    10.1109/globecom54140.2023.10436779
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlson, Joseph;Castellanos, Miguel R.;Heath, Robert W.
  • 通讯作者:
    Heath, Robert W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Heath其他文献

Issues advertising and its effect on public opinion recall
  • DOI:
    10.1016/s0363-8111(86)80026-1
  • 发表时间:
    1986-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Heath;William Douglas
  • 通讯作者:
    William Douglas

Robert Heath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Heath', 18)}}的其他基金

NSF-IITP: START6G -- Sub-THz Augmented Routing and Transmission for 6G
NSF-IITP:START6G——6G 亚太赫兹增强路由和传输
  • 批准号:
    2153698
  • 财政年份:
    2022
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Sensor aided millimeter wave communication for connected vehicles
用于联网车辆的传感器辅助毫米波通信
  • 批准号:
    2135077
  • 财政年份:
    2021
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
WiFiUS: Millimeter Wave-Based Wearable Networks in High-End IoT Applications
WiFiUS:高端物联网应用中基于毫米波的可穿戴网络
  • 批准号:
    1702800
  • 财政年份:
    2017
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Sensor aided millimeter wave communication for connected vehicles
用于联网车辆的传感器辅助毫米波通信
  • 批准号:
    1711702
  • 财政年份:
    2017
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Next Generation Communications with Low-Resolution ADCs: Fundamentals and Practical Design
CIF:小型:协作研究:采用低分辨率 ADC 的下一代通信:基础知识和实用设计
  • 批准号:
    1527079
  • 财政年份:
    2015
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CIF: Small: Realizing Millimeter Wave Communication Systems
CIF:小型:实现毫米波通信系统
  • 批准号:
    1319556
  • 财政年份:
    2013
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CIF: Small: Interference Modeling and Management for Heterogenous Networks
CIF:小型:异构网络的干扰建模和管理
  • 批准号:
    1218338
  • 财政年份:
    2012
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Signal Processing on Special Manifolds with Applications to Wireless Communication
特殊流形信号处理及其在无线通信中的应用
  • 批准号:
    0830615
  • 财政年份:
    2008
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative: Quantizing Wireless Channels
协作:量化无线通道
  • 批准号:
    0514194
  • 财政年份:
    2005
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Applied Electromagnetic Characterization of Wideband Multi-Array Communication
合作研究:宽带多阵列通信的应用电磁特性
  • 批准号:
    0322957
  • 财政年份:
    2003
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
  • 批准号:
    2326599
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
  • 批准号:
    2326559
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225577
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
  • 批准号:
    2225576
  • 财政年份:
    2022
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
  • 批准号:
    2133655
  • 财政年份:
    2022
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NSF-AoF: CNS Core: Small: CRUISE: A Cross-system Architecture Design for Autonomous Wireless Networks based on Lifelong Machine Learning
NSF-AoF:CNS 核心:小型:CRUISE:基于终身机器学习的自主无线网络的跨系统架构设计
  • 批准号:
    2225427
  • 财政年份:
    2022
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了