NSF-AoF: NeTS: Small: Local 6G Connectivity: Controlled, Resilient, and Secure (6G-ConCoRSe)
NSF-AoF:NetS:小型:本地 6G 连接:受控、弹性和安全 (6G-ConCoRSe)
基本信息
- 批准号:2326599
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Local 5G, otherwise known as private networking, has a huge economic potential, with some studies estimating its valuation at $36 billion in 2030, up from $1.1 billion in 2022. Its evolution, local 6G, will predominantly serve highly localized scenarios where wireless connectivity enables new vertical applications and digitalization in fields as diverse as healthcare, manufacturing, or retail. Unlike conventional broadband, these use cases require reliable, resilient, and secure connectivity. This can be achieved with the reflective intelligent surface technology that can reflect or scatter signals already propagating in the environment. However, reflective intelligent surfaces cannot effectively direct the reflected signals without sufficiently accurate information about the wireless environment. This research project focuses on addressing this issue and developing a new neural network-based method for channel representation with a focus on advancing the concept of local 6G. To this end, the project investigates the theoretical foundations of the proposed method, experimental validation, and its implications for local 6G architecture, design, and security. The project contributes to an inter-continental alignment between visions for 6G by engaging the academic research and industry communities involved in pre-standardization activities in the U.S. and Europe. Other broader impacts include advances in workforce development and educational activities, enhancing diversity, and disseminating academic results to the public.This project advances the concept of private networks by introducing controllable, resilient, and secure local 6G that features novel neural network-based wireless channel representation, a network architecture that integrates reflective intelligent surfaces, and security solutions based on geofencing. The project is divided into three research thrusts, addressing different pillars of local 6G: controllability (Thrust 1), resiliency (Thrust 2), and security (Thrust 3). Thrust 1 develops a novel method of Neural Wireless Channel, based on neural processes, to track, predict, and control the wireless channel. The experimental validation of the method entails capturing a unique dataset that may be used to advance research in artificial intelligence applications to other areas of communications. Thrust 2 develops a novel stochastic framework for analyzing reliability and resiliency in local 6G that comprises reflective surfaces and neural network-based channel representation. Thrust 3 reports on new security vulnerabilities and threats associated with using reflective surfaces and neural network-based channel models and proposes a mechanism based on geofencing to address these security gaps. Overall, the proposed research agenda focuses on the new channel representation methods to advance reflective intelligent surface technology and enable local 6G connectivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本地5G,也被称为私有网络,具有巨大的经济潜力,一些研究估计其估值在2030年为360亿美元,高于2022年的11亿美元。它的演进,本地6G,将主要服务于高度本地化的场景,其中无线连接可以在医疗保健,制造或零售等不同领域实现新的垂直应用和数字化。与传统宽带不同,这些用例需要可靠、弹性和安全的连接。这可以通过反射智能表面技术来实现,该技术可以反射或散射已经在环境中传播的信号。然而,反射智能表面在没有关于无线环境的足够准确的信息的情况下不能有效地引导反射信号。该研究项目的重点是解决这个问题,并开发一种新的基于神经网络的信道表示方法,重点是推进本地6G的概念。为此,该项目研究了所提出的方法的理论基础,实验验证及其对本地6G架构,设计和安全性的影响。该项目通过让美国和欧洲参与标准化前活动的学术研究和行业社区参与进来,为6G愿景之间的洲际协调做出了贡献。其他更广泛的影响包括劳动力发展和教育活动的进步,增强多样性,并向公众传播学术成果。该项目通过引入可控,弹性和安全的本地6G来推进专用网络的概念,该本地6G具有新颖的基于神经网络的无线信道表示,集成反射智能表面的网络架构以及基于地理围栏的安全解决方案。该项目分为三个研究重点,解决本地6G的不同支柱:可控性(重点1),弹性(重点2)和安全性(重点3)。Thrust 1开发了一种基于神经过程的神经无线信道的新方法,以跟踪,预测和控制无线信道。该方法的实验验证需要捕获一个独特的数据集,可用于推进人工智能应用到其他通信领域的研究。Thrust 2开发了一种新的随机框架,用于分析本地6G的可靠性和弹性,包括反射表面和基于神经网络的信道表示。Thrust 3报告了与使用反射表面和基于神经网络的通道模型相关的新安全漏洞和威胁,并提出了一种基于地理围栏的机制来解决这些安全漏洞。总体而言,拟议的研究议程侧重于新的信道表示方法,以推进反射智能表面技术,并实现本地6G连接。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacek Kibilda其他文献
Jacek Kibilda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacek Kibilda', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Securing Next G Millimeter-Wave Communication in Programmable RF Environments with Reconfigurable Intelligent Surface (SECURIS)
协作研究:SaTC:核心:中:使用可重构智能表面 (SECURIS) 确保可编程射频环境中的下一代毫米波通信
- 批准号:
2318798 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
IUCRC Planning Grant Virginia Tech: Center for Wireless Innovation towards Secure, Pervasive, Efficient and Resilient Next G Networks (WISPER)
IUCRC 规划拨款弗吉尼亚理工大学:实现安全、普遍、高效和有弹性的下一代网络 (WISPER) 的无线创新中心
- 批准号:
2209662 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
NSF-AoF: CIF: Small: Distributed AI for enhanced security in satellite-aided wireless navigation (RESILIENT)
NSF-AoF:CIF:小型:分布式 AI,用于增强卫星辅助无线导航的安全性(弹性)
- 批准号:
2326559 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
NSF-AoF: SOLID: System-wide Operation via Learning In-device Dissimilarities
NSF-AoF:SOLID:通过学习设备内差异进行系统范围的操作
- 批准号:
2225555 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: AF: Small: Energy-Efficient THz Communications Across Massive Dimensions
合作研究:NSF-AoF:CIF:AF:小型:大尺寸的节能太赫兹通信
- 批准号:
2225576 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
- 批准号:
2225617 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
NSF-AoF: Impact of user, environment, and artificial surfaces on above-100 GHz wireless communications
NSF-AoF:用户、环境和人造表面对 100 GHz 以上无线通信的影响
- 批准号:
2133655 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: CRUISE: A Cross-system Architecture Design for Autonomous Wireless Networks based on Lifelong Machine Learning
NSF-AoF:CNS 核心:小型:CRUISE:基于终身机器学习的自主无线网络的跨系统架构设计
- 批准号:
2225427 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant