Data-Driven Leaning and Controlling Metallurgy Matters in Dissimilar Metal Joints
数据驱动的学习和控制异种金属接头中的冶金问题
基本信息
- 批准号:2226976
- 负责人:
- 金额:$ 67.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will support fundamental research on controlling phases generated at the welded interface between dissimilar metals. Joining dissimilar metals has become increasingly important for creating lightweight, high-performance, and economic structures in various industries. However, the chemical reactions between two dissimilar metals during welding can generate harmful phases like brittle intermetallic compounds. This award aims to address scientific and technical challenges in controlling the metallurgical phase formation in the weld by introducing a suitable interposing metal to create a nonlinear alloy composition pathway through the joint thickness. The situation is illustrated by the laser welding (LW) of aluminum and copper. These two metals are major materials in the assembly of battery cells, which are in high demand for electric vehicles. This research will enable engineers to design and transform the metallic phases in the weld in a controllable fashion with more freedom than when limited to the two base metals. In turn, this award can broaden the adoption of dissimilar metal joints in industries such as automotive, aerospace, power generation, marine application, medical devices, and information technology. This research involves several disciplines, including manufacturing, materials science, multiscale simulations, and machine learning. The multi-disciplinary approach will broaden the participation of underrepresented groups in research and positively impact both undergraduate and graduate education. The investigators will design and realize optimal bonding phases with a data-driven paradigm to learn and control metallurgic phases in dissimilar metal joints. The research team will conduct multiscale simulations for data generation to establish data-driven models which provide high-fidelity welding predictions. Metallurgical reactions at the bonding interface will be explained using calculation of phase diagrams (CALPHAD)-based analysis, correlation analysis and molecular dynamics simulations. Machine learning will be used to provide inverse design of the nonlinear modification and laser welding processes, and simulation and designs will be validated experimentally. This research will fill the knowledge gap in understanding the interactions between LW energy inputs, keyhole dynamics, phase formation, and transition from liquids to solids under different LW conditions. It will build an efficient methodology, via thermodynamics and kinetics, to predict preferred phases and properties to meet a joint’s requirements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将支持控制异种金属焊接界面处产生的相的基础研究。异种金属的连接对于在各个行业中制造轻质、高性能和经济的结构变得越来越重要。然而,焊接过程中两种不同金属之间的化学反应会产生有害相,如脆性金属间化合物。该奖项旨在通过引入合适的插入金属来控制焊缝中冶金相的形成,以通过接头厚度创建非线性合金成分路径,从而解决科学和技术挑战。铝和铜的激光焊接(LW)说明了这种情况。这两种金属是组装电池单元的主要材料,电动汽车对电池单元的需求很高。这项研究将使工程师能够以可控的方式设计和转换焊缝中的金属相,比仅限于两种基底金属时更自由。反过来,该奖项可以扩大异种金属接头在汽车、航空航天、发电、船舶应用、医疗器械和信息技术等行业的应用。这项研究涉及多个学科,包括制造,材料科学,多尺度模拟和机器学习。多学科方法将扩大代表性不足的群体参与研究,并对本科和研究生教育产生积极影响。研究人员将设计和实现最佳的键合阶段与数据驱动的范例,以学习和控制异种金属接头的焊接阶段。研究团队将进行多尺度模拟以生成数据,从而建立数据驱动的模型,提供高保真的焊接预测。结合界面处的冶金反应将使用基于相图计算(CALPHAD)的分析、相关分析和分子动力学模拟来解释。机器学习将用于提供非线性修改和激光焊接过程的逆向设计,并将通过实验验证模拟和设计。这项研究将填补知识空白,了解LW能量输入,锁孔动力学,相形成之间的相互作用,并在不同的LW条件下从液体到固体的过渡。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamic re-modeling of the Yb-Sb system aided by first-principles calculations
第一性原理计算辅助下的 Yb-Sb 系统热力学重构
- DOI:10.1016/j.calphad.2023.102541
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Paz Soldan Palma, Jorge;Chong, XiaoYu;Wang, Yi;Shang, Shun-Li;Liu, Zi-Kui
- 通讯作者:Liu, Zi-Kui
Genomic materials design: CALculation of PHAse Dynamics
- DOI:10.1016/j.calphad.2023.102590
- 发表时间:2023-08-01
- 期刊:
- 影响因子:2.4
- 作者:Olson, G. B.;Liu, Z. K.
- 通讯作者:Liu, Z. K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingjing Li其他文献
Synthesis and characterization of β-cyclodextrin-conjugated alginate hydrogel for controlled release of hydrocortisone acetate in response to mechanical stimulation
β-环糊精缀合藻酸盐水凝胶的合成和表征,用于响应机械刺激控制释放醋酸氢化可的松
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Li;Jingjing Li;Yang Liu;Huan Zhou;Zhiguo Zhang;L. Deng - 通讯作者:
L. Deng
Component effect on microstructure of rapidly cooled FeCuNi alloys
成分对快冷FeCuNi合金显微组织的影响
- DOI:
10.1016/j.cplett.2020.137630 - 发表时间:
2020-08 - 期刊:
- 影响因子:2.8
- 作者:
Jingjing Li;Zean Tian;Quan Xie;Shixian Xiong - 通讯作者:
Shixian Xiong
Adaptive Component Embedding for Domain Adaptation
用于域适应的自适应组件嵌入
- DOI:
10.1109/tcyb.2020.2974106 - 发表时间:
2020-03 - 期刊:
- 影响因子:11.8
- 作者:
Mengmeng Jing;Jidong Zhao;Jingjing Li;Lei Zhu;Yang Yang;Heng Tao Shen - 通讯作者:
Heng Tao Shen
Biomineralization of DNA Nanoframeworks for Intracellular Delivery, On-Demand Diagnosis, and Synergistic Cancer Treatments
用于细胞内递送、按需诊断和协同癌症治疗的 DNA 纳米框架的生物矿化
- DOI:
10.1021/acs.analchem.2c03726 - 发表时间:
2022 - 期刊:
- 影响因子:7.4
- 作者:
Xiaoni Wang;Xiaotong Shen;Jingjing Li;Xiyang Ge;Jin Ouyang;Na Na - 通讯作者:
Na Na
Grammatical and contextual factors affecting the interpretation of superordinate collectives in child and adult Mandarin
影响儿童和成人普通话中上级集体解释的语法和语境因素
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Aijun Huang;Jingjing Li;L. Meroni - 通讯作者:
L. Meroni
Jingjing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingjing Li', 18)}}的其他基金
CAREER: Surface Interactions in Dissimilar Material Joining
职业:异种材料连接中的表面相互作用
- 批准号:
1554748 - 财政年份:2016
- 资助金额:
$ 67.25万 - 项目类别:
Standard Grant
Friction Stir Blind Riveting for Dissimilar Materials
异种材料的搅拌摩擦盲铆接
- 批准号:
1664377 - 财政年份:2016
- 资助金额:
$ 67.25万 - 项目类别:
Standard Grant
CAREER: Surface Interactions in Dissimilar Material Joining
职业:异种材料连接中的表面相互作用
- 批准号:
1651024 - 财政年份:2016
- 资助金额:
$ 67.25万 - 项目类别:
Standard Grant
Friction Stir Blind Riveting for Dissimilar Materials
异种材料的搅拌摩擦盲铆接
- 批准号:
1363468 - 财政年份:2014
- 资助金额:
$ 67.25万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 67.25万 - 项目类别:
Continuing Grant