CAREER: Scalable Computational Seismology for All

职业:面向所有人的可扩展计算地震学

基本信息

  • 批准号:
    2227018
  • 负责人:
  • 金额:
    $ 50.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Computational seismology methods analyze data that measure vibrations of the Earth. These methods allow scientists to understand earthquake hazards, to measure stability of the ground underneath structures, to monitor groundwater systems, to study changes in threatened Earth systems such as glaciers and permafrost, to safely and efficiently explore natural resources underground, and to monitor civil infrastructure health, among other applications. Seismology has undergone a radical shift recently; new sensor technologies have made data collection much easier, enabling hundreds to thousands of times larger datasets that can be used for detailed studies of larger regions for long periods of time. Most scientists cannot use these data because: (1) data are only shared internally among groups that have new sensors, (2) public seismology data storage facilities cannot support such large data quantities, and (3) most geoscientists do not have the computational resources to analyze the data. Because of these three issues, there is an inequitable research environment, much data remains unexplored, and important geoscience discoveries cannot occur. While there are ongoing efforts to address the first issue, without major cyberinfrastructure advances addressing the second and third issues newly acquired data is unlikely to be fully analyzed. This project aims to create new computational algorithms, software and models of open data sharing to ensure that any geoscientist can glean valuable insights from large-scale seismology data. The education and outreach program will create opportunities for more people to participate in mathematical modeling and large-scale data analysis for science and engineering applications. The project PI will develop and strengthen existing efforts to support diverse and inclusive research and learning environments. She will continue to develop a program to introduce women undergraduates to mathematics research, growing it to be a sustainable multi-faculty course serving more students from underrepresented groups. The project will increase the impact of the annual data science conference led by the PI. The conference features research by women data scientists and tutorials on modern data science techniques, and connects the interdisciplinary data science community on a rural campus.The project will derive and analyze new geoscience algorithms, develop community software and explore models of open data distribution. The project goal is to ensure that any seismologist can gain valuable geophysical insights from extreme-scale seismic data in the field, at institutions with limited computing resources, and on modern high performance computing (HPC) systems. Expertise in large-scale seismic sensing, mathematics, high-throughput computational science, and algorithm design are necessary to achieve these advances. The project proposes a new model for public seismology data archives that allows for the storage of lossy-compressed data and data products, thus creating a new capacity to host ultra-high-density and large-scale seismic data, without displacing existing systems for high-quality seismometer data. To address large-scale data analysis, the PI has previously created several scalable algorithms, and theoretical analyses suggest that a complete suite of scalable, parallelizable algorithms for multiple types of passive seismic data processing can be developed. Many of the algorithms operate directly on compressed information without reconstructing the original data, which reduces costly data movement. The project will develop fast serial and parallel software algorithm implementations, and investigate the use of accelerator hardware for high computational efficiency. For each algorithm the project will theoretically derive and computationally verify trends governing tradeoffs between computational efficiency, memory footprint, and end-to-end accuracy specific to the geophysical analyses. The algorithms will incorporate error bounds for realistic non-idealized data and will be included in predictive software for geoscientists to make informed decisions prior to requests for compressed data or data products. The new methods will be tested by applying them to cutting-edge passive seismic data at the scale of tens to hundreds of terabytes. The data will enable seismology analyses in for urban hydrology and geotechnical engineering, and also analyses to aid in understanding glacier movements to improve climate models via improved boundary conditions and mechanistic understanding. In addition to earthquake seismology, hydrology, geotechnical engineering, and cryosphere studies, the methods developed can be applied to many high-throughput computational science problems utilizing sparse or compressed representations (e.g., structural health monitoring, imaging science, solar physics, radioastronomy, wireless communications, industrial facility monitoring). To increase adoption of new methods by geoscientists, the project will develop tutorials, promote scientific community collaboration, and organize research workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算地震学方法分析测量地球振动的数据。这些方法使科学家能够了解地震灾害,测量结构下方地面的稳定性,监测地下水系统,研究受威胁的地球系统(如冰川和永久冻土)的变化,安全有效地勘探地下自然资源,并监测民用基础设施的健康状况。地震学最近经历了一个根本性的转变;新的传感器技术使数据收集变得更加容易,使数百到数千倍的数据集可以用于长期对更大区域的详细研究。大多数科学家无法使用这些数据,因为:(1)数据只在拥有新传感器的小组内部共享,(2)公共地震数据存储设施无法支持如此大的数据量,以及(3)大多数地球科学家没有计算资源来分析数据。由于这三个问题,存在着不公平的研究环境,许多数据尚未探索,重要的地球科学发现无法出现。虽然正在努力解决第一个问题,但如果没有解决第二个和第三个问题的重大网络基础设施进步,新获得的数据不太可能得到充分分析。该项目旨在创建新的计算算法,软件和开放数据共享模型,以确保任何地球科学家都可以从大规模地震数据中收集有价值的见解。教育和推广计划将为更多人创造机会,参与科学和工程应用的数学建模和大规模数据分析。PI项目将发展和加强现有的努力,以支持多样化和包容性的研究和学习环境。她将继续制定一项计划,介绍女本科生数学研究,成长为一个可持续的多教师课程,为更多的学生从代表性不足的群体。该项目将增加PI领导的年度数据科学会议的影响力。本次会议的特点是女性数据科学家的研究和现代数据科学技术的教程,并连接跨学科的数据科学社区在农村校园。该项目将推导和分析新的地球科学算法,开发社区软件,并探索开放数据分布的模型。该项目的目标是确保任何地震学家都可以从现场、计算资源有限的机构和现代高性能计算(HPC)系统的极端规模地震数据中获得有价值的地球物理见解。大规模地震传感,数学,高通量计算科学和算法设计方面的专业知识是实现这些进步所必需的。该项目提出了一个公共地震学数据档案的新模式,允许存储有损压缩数据和数据产品,从而创造了一个新的能力,以托管超高密度和大规模地震数据,而不会取代现有的高质量地震仪数据系统。为了解决大规模的数据分析,PI以前已经创建了几个可扩展的算法,理论分析表明,可以开发一套完整的可扩展的,并行化的算法,用于多种类型的被动地震数据处理。许多算法直接对压缩信息进行操作,而不重构原始数据,这减少了昂贵的数据移动。该项目将开发快速串行和并行软件算法实现,并研究使用加速器硬件来提高计算效率。对于每个算法,该项目将从理论上推导和计算验证控制计算效率,内存占用和特定于地球物理分析的端到端精度之间的权衡的趋势。这些算法将纳入实际非理想化数据的误差范围,并将纳入预测软件,供地球科学家在请求压缩数据或数据产品之前作出知情决定。新方法将通过将其应用于数十至数百TB规模的尖端被动地震数据进行测试。这些数据将使城市水文和岩土工程中的地震学分析成为可能,并有助于理解冰川运动,通过改善边界条件和机械理解来改善气候模型。 除了地震学、水文学、岩土工程和冰冻圈研究之外,所开发的方法还可以应用于利用稀疏或压缩表示的许多高通量计算科学问题(例如,结构健康监测、成像科学、太阳物理学、射电天文学、无线通信、工业设施监测)。为了增加地球科学家对新方法的采用,该项目将开发教程,促进科学界的合作,并组织研究讲习班。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eileen Martin其他文献

Adaptive reward learning is intact in young adults with remitted substance use and depressive disorders
  • DOI:
    10.1016/j.drugalcdep.2015.07.334
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott A. Langenecker;Natania A. Crane;Sophie DelDonno;Laura Gabriel;Jennifer Gowins;Cassandra Nagel;Brian Mickey;Jon-Kar Zubieta;Robin Mermelstein;Eileen Martin
  • 通讯作者:
    Eileen Martin
Sex differences in effects of trait impulsivity on vulnerability to substance dependence
  • DOI:
    10.1016/j.drugalcdep.2015.07.1053
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ayca Coskunpinar;Jasmin Vassileva;Eileen Martin
  • 通讯作者:
    Eileen Martin
Working memory is impaired for both male and female HIV+ substance users
  • DOI:
    10.1016/j.drugalcdep.2016.08.359
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eileen Martin;Raul Gonzalez;Jasmin Vassileva;Pauline Maki;Leah Rubin;David Hardy
  • 通讯作者:
    David Hardy
Verbal memory is impaired among HIV<sup>+</sup> female, but not HIV<sup>+</sup> male cocaine users
  • DOI:
    10.1016/j.drugalcdep.2015.07.383
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eileen Martin;Raul Gonzalez;Jasmin Vassileva;Pauline Maki
  • 通讯作者:
    Pauline Maki

Eileen Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eileen Martin', 18)}}的其他基金

Collaborative Research: CFS (Track III): Centers for Transformative Environmental Monitoring Programs (CTEMPs)
合作研究:CFS(第三轨):变革性环境监测计划中心 (CTEMP)
  • 批准号:
    2243963
  • 财政年份:
    2023
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
Catalytic: Distributed Acoustic Sensing Data Analysis Ecosystem (DASDAE)
催化:分布式声学传感数据分析生态系统(DASDAE)
  • 批准号:
    2148614
  • 财政年份:
    2022
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Computational Seismology for All
职业:面向所有人的可扩展计算地震学
  • 批准号:
    2046387
  • 财政年份:
    2021
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
SitS: Collaborative Research: Understand and forecast long-term variations of in-situ geophysical and geomechanical characteristics of degrading permafrost in the Arctic
SitS:合作研究:了解和预测北极退化永久冻土原位地球物理和地质力学特征的长期变化
  • 批准号:
    2034366
  • 财政年份:
    2021
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 50.97万
  • 项目类别:
Scalable Computational Methods for Large-Scale Stochastic Optimization under High-Dimensional Uncertainty
高维不确定性下大规模随机优化的可扩展计算方法
  • 批准号:
    2245674
  • 财政年份:
    2022
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2022
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2021
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Scalable Remote Sensing Computational Framework for Near-real-time Crop Characterization
职业:用于近实时作物表征的可扩展遥感计算框架
  • 批准号:
    2048068
  • 财政年份:
    2021
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Computational Seismology for All
职业:面向所有人的可扩展计算地震学
  • 批准号:
    2046387
  • 财政年份:
    2021
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Continuing Grant
Accelerating research to advance care for adults with congenital heart disease through development of validated scalable computational phenotypes
通过开发经过验证的可扩展计算表型,加速研究以推进对患有先天性心脏病的成人的护理
  • 批准号:
    10614592
  • 财政年份:
    2020
  • 资助金额:
    $ 50.97万
  • 项目类别:
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2020
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
  • 批准号:
    2012410
  • 财政年份:
    2020
  • 资助金额:
    $ 50.97万
  • 项目类别:
    Standard Grant
Accelerating research to advance care for adults with congenital heart disease through development of validated scalable computational phenotypes
通过开发经过验证的可扩展计算表型,加速研究以推进对患有先天性心脏病的成人的护理
  • 批准号:
    10404603
  • 财政年份:
    2020
  • 资助金额:
    $ 50.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了