Unique Turbulence Dynamics in Hurricane Boundary Layers and Improving Their Parameterizations in Numerical Weather Prediction Models
飓风边界层中独特的湍流动力学及其在数值天气预报模型中的参数化改进
基本信息
- 批准号:2228299
- 负责人:
- 金额:$ 45.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hurricanes have been the costliest natural disaster in US history thus far by causing billions of dollars in damage. Ocean warming and climate change can exacerbate tropical cyclone destruction by increasing the frequency and intensity of future major hurricanes. Only four recent hurricanes — Katrina, Sandy, Maria, and Harvey — resulted in more than $450B in damages and about 5,000 fatalities. Thus, it is imperative for the scientific community to better understand and forecast hurricane dynamics and its turbulent winds in order to effectively mitigate their economic ramifications. Although turbulence plays a significant role in hurricane evolution, it is neither thoroughly understood nor parameterized in hurricane flows. Given the remarkable impacts of future hurricanes on humans and the lack of a reliable turbulence scale model for such rotating flows, a high-fidelity hurricane model is now essential. This project aims to address this knowledge gap using a combination of numerical weather prediction (NWP) models and observations to thrust forward the understanding of hurricane turbulence, and to develop practical methodologies for improving hurricane forecasts in NWP models.The research provides pathways to new frontiers in turbulence theory and modeling of hurricane flows. In particular, the driving hypothesis of the project is “turbulence dynamics in hurricane boundary layers (HBLs) are significantly different from typical atmospheric boundary layers (ABLs) due to rotation in HBLs and their large Rossby number (centrifugal/Coriolis force); therefore, existing turbulence models in NWPs limit the accuracy of hurricane forecasts.” This hypothesis will be tested by answering these open research questions 1) How do hurricanes modulate the characteristic mixing length scales and turbulence dynamics in the HBL? and 2) How should the horizontal and vertical turbulent fluxes of an HBL be parameterized in NWPs compared to typical ABLs? To answer these questions, a unique combination of high-fidelity large-eddy simulations (LESs), NWPs, and observations will be employed. The preliminary results support the project’s central hypothesis by demonstrating remarkably different turbulence structures and energy spectra in HBLs when compared to typical ABLs, and substantial improvements in NWP’s hurricane forecasts when current turbulence models are altered. Hence, addressing the above questions will advance the field of physical and dynamic meteorology by elucidating the distinctive turbulence mechanisms in hurricanes compared to conventional much-studied ABLs. Other notable expected outcomes of the project include an extensive dataset of high-resolution LESs of HBLs, new physics-based turbulence closures with rotation correction that are specifically designed for real hurricanes, and a dataset of improved hurricane simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到目前为止,飓风造成了数十亿美元的损失,是美国历史上损失最大的自然灾害。海洋变暖和气候变化可能会增加未来主要飓风的频率和强度,从而加剧热带气旋的破坏。最近只有四次飓风-卡特里娜、桑迪、玛丽亚和哈维-造成了超过4500亿美元的损失和约5000人死亡。因此,科学界必须更好地了解和预测飓风的动态及其湍急的风,以便有效地减轻其经济影响。虽然湍流在飓风演变中起着重要的作用,但它既没有被彻底理解,也没有在飓风流动中被参数化。鉴于未来飓风对人类的显著影响,以及缺乏针对这种旋转流动的可靠湍流尺度模型,高保真飓风模型现在至关重要。该项目旨在利用数值天气预报(NWP)模式和观测的组合来解决这一知识鸿沟,以推动对飓风湍流的理解,并开发实用的方法来改进NWP模式中的飓风预报。该研究为湍流理论和飓风流动模拟提供了新的前沿。特别是,该项目的驱动假设是“飓风边界层(HBL)中的湍流动力学与典型大气边界层(ABL)中的湍流动力学显著不同,这是由于HBL中的旋转及其较大的Rossby数(离心力/科里奥利力);因此,数值预报中现有的湍流模型限制了飓风预报的准确性。”这一假设将通过回答这些开放的研究问题来检验:1)飓风如何调制HBL中特有的混合长度尺度和湍流动力学?2)与典型的大气边界层相比,数值预报的水平和垂直湍流通量在数值预报中应该如何参数化?为了回答这些问题,将采用高保真大涡模拟(LESS)、数值预报和观测的独特组合。初步结果支持了该项目的中心假设,因为与典型的ABL相比,HBL中的湍流结构和能谱明显不同,并且当当前的湍流模型改变时,NWP的飓风预测得到了实质性的改善。因此,解决上述问题将通过阐明飓风中独特的湍流机制来推动物理和动力气象学领域的发展,而不是传统的大量研究的ABL。该项目的其他值得注意的预期成果包括一个广泛的高分辨率减少HBL的数据集,专门为真实飓风设计的具有旋转校正的新的基于物理的湍流闭合,以及一个改进的飓风模拟数据集。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Impacts of Vertical Diffusion Parameterizations on Intensifying Hurricane Simulations
垂直扩散参数化对强化飓风模拟的影响
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Matak, Leo;Momen, Mostafa
- 通讯作者:Momen, Mostafa
The Mean Kinematic Structure of the Tropical Cyclone Boundary Layer and Its Relationship to Intensity Change
热带气旋边界层的平均运动结构及其与强度变化的关系
- DOI:10.1175/mwr-d-21-0335.1
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Zhang, Jun A.;Rogers, Robert F.;Reasor, Paul D.;Gamache, John
- 通讯作者:Gamache, John
The Role of Vertical Diffusion Parameterizations in the Dynamics and Accuracy of Simulated Intensifying Hurricanes
- DOI:10.1007/s10546-023-00818-w
- 发表时间:2023-07
- 期刊:
- 影响因子:4.3
- 作者:L. Matak;M. Momen
- 通讯作者:L. Matak;M. Momen
The Role of Turbulence and Roughness Length Parameterizations in Improving Major Hurricane Simulations in Weather Forecasting Models
湍流和粗糙度长度参数化在改进天气预报模型中的主要飓风模拟中的作用
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Momen, Mostafa;Matak, Leo;Li, Meng
- 通讯作者:Li, Meng
Baroclinicity and Stability in the Atmospheric Boundary Layer: Characterizing Their Interacting Effects via Large-Eddy Simulations and Reduced Models (Invited Presentation)
大气边界层的斜压性和稳定性:通过大涡模拟和简化模型表征它们的相互作用效应(特邀演讲)
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Momen, Mostafa
- 通讯作者:Momen, Mostafa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mostafa Momen其他文献
Enhancing Air Pollution Forecasts in Cities by Characterizing the Urban Heat Island Effects on Planetary Boundary Layers
通过描述城市热岛对行星边界层的影响来增强城市空气污染预测
- DOI:
10.1016/j.atmosres.2025.107923 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.400
- 作者:
Leo Matak;Mostafa Momen - 通讯作者:
Mostafa Momen
Mostafa Momen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Particle dynamics at the free surface: waves, turbulence, and microplastics
职业:自由表面的粒子动力学:波浪、湍流和微塑料
- 批准号:
2237550 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Continuing Grant
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2346799 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Conference: 2024 Summer Research School on Fluid Dynamics: Topics in Turbulence
会议:2024 年夏季流体动力学研究学校:湍流主题
- 批准号:
2330793 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Modeling Dynamics and Impacts of a new class of Kelvin-Helmholtz Instabilities that Drive Enhanced Turbulence and Mixing in the MLT
对驱动 MLT 中增强的湍流和混合的新型开尔文-亥姆霍兹不稳定性的动力学和影响进行建模
- 批准号:
2230482 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Convective Cloud Dynamics and Turbulence Interactions with Microphysical Processes and the Atmospheric Environment (CLOUDY TIME)
对流云动力学和湍流与微物理过程和大气环境的相互作用(云时)
- 批准号:
NE/X018547/1 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Research Grant
Supernovae simulation with self-consistent turbulence model incorporated: Dynamics of proto-neutron stars
结合自洽湍流模型的超新星模拟:原中子星动力学
- 批准号:
23H01199 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring turbulence-sediment dynamics for river erosion control
探索河流侵蚀控制的湍流-泥沙动力学
- 批准号:
RGPIN-2020-06796 - 财政年份:2022
- 资助金额:
$ 45.82万 - 项目类别:
Discovery Grants Program - Individual
Dynamics Beyond Turbulence and Obstructions to Classification
超越湍流和分类障碍的动力学
- 批准号:
2154258 - 财政年份:2022
- 资助金额:
$ 45.82万 - 项目类别:
Continuing Grant
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2055019 - 财政年份:2021
- 资助金额:
$ 45.82万 - 项目类别:
Standard Grant
Exploring turbulence-sediment dynamics for river erosion control
探索河流侵蚀控制的湍流-泥沙动力学
- 批准号:
RGPIN-2020-06796 - 财政年份:2021
- 资助金额:
$ 45.82万 - 项目类别:
Discovery Grants Program - Individual