Modeling Dynamics and Impacts of a new class of Kelvin-Helmholtz Instabilities that Drive Enhanced Turbulence and Mixing in the MLT

对驱动 MLT 中增强的湍流和混合的新型开尔文-亥姆霍兹不稳定性的动力学和影响进行建模

基本信息

项目摘要

State-of-the-art general circulation models (GCMs) used for weather and climate prediction underestimate the amount of turbulent mixing in the middle atmosphere by up to a factor of 2, and as a result, mischaracterize the transport and global distributions of CO2 and other primary atmospheric constituents. GCMs attribute mixing to a single dynamical source that neglects newly discovered, small-scale turbulent processes thought to be widespread, and perhaps even ubiquitous, in the middle atmosphere and beyond. This project will identify these unique “tube and knot” (T&K) instability dynamics and their implications for mixing through observationally guided, high-resolution modeling studies. Sophisticated turbulence and chemical analysis capabilities will be employed to address scientific goals among a diverse range of atmospheric research communities. The resulting knowledge of T&K-driven momentum transport and deposition will aid the development of improved mixing parameterizations in GCMs and yield higher accuracy weather and climate forecasting to address a critical societal need. It will also support the education of a University of Colorado Boulder graduate student and a Utah State University undergraduate student while facilitating outreach events that promote climate science education to under-represented pre-college students in the surrounding communities.This project will identify and quantify Kelvin Helmholtz instability (KHI) T&K dynamics and implications for mixing in the MLT via high-resolution modeling, utilizing the unique capabilities of in-house models CGCAM and SAM to characterize instability dynamics extending to turbulence scales and mixing in deep domains with realistic environments. The results will improve mixing parameterization schemes in weather and climate models by addressing GCM underestimation of the eddy diffusion coefficient Kzz. The goals of this research are to identify and quantify the large-scale (mean and tidal) and GW environments that enable KHI T&K dynamics, and account for their spatial scales and intensities; to quantify the diversity of KHI T&K dynamics, and their implications for energy dissipation, mixing, and influences in the MLT via high-resolution modeling; and to employ our KHI T&K modeling to assess their enhancements of energy dissipation rates, mixing, and implied Kzz relative to those expected for GW breaking. The analysis and modeling approach addressing these research goals will employ KHI T&K observations by USU Advanced Mesospheric Temperature Mapper (AMTM) OH airglow imaging and GATS SAAMER radar and lidar profiling of winds, temperatures, and Na densities in Tierra del Fuego, Chile, and Poker Flat, Alaska, to guide representative modeling environments (e.g., GW and tidal shears, multi-scale superpositions). Informed by these observations, a wide range of KHI T&K simulations will be performed to capture the diversity of responses for varying environmental conditions and evaluate KHI T&K mixing, enabling definition of the parameters dictating a KHI Kzz for representative shear layer scales and Richardson and Reynolds numbers. This research will directly result in a better understanding of unresolved mixing dynamics in the MLT and how they impact constituent particles and energy transport to higher levels of the atmosphere.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于天气和气候预测的最先进的大气环流模式(GCMs)将中层大气中的湍流混合量低估了2倍,因此,错误地描述了二氧化碳和其他主要大气成分的输送和全球分布。gcm将混合归因于单一的动力源,忽略了新发现的小规模湍流过程,这些湍流过程被认为在大气中层及大气层之外广泛存在,甚至可能无处不在。该项目将通过观测指导的高分辨率建模研究,确定这些独特的“管结”(T&K)不稳定动力学及其对混合的影响。复杂的湍流和化学分析能力将被用于解决各种大气研究界的科学目标。由此产生的关于T& k驱动动量传输和沉积的知识将有助于改进gcm中混合参数化的发展,并产生更高精度的天气和气候预报,以满足关键的社会需求。它还将支持科罗拉多大学博尔德分校的一名研究生和犹他州立大学的一名本科生的教育,同时促进向周边社区代表性不足的大学预科学生推广气候科学教育的推广活动。该项目将通过高分辨率建模识别和量化开尔文亥姆霍兹不稳定性(KHI) T&K动力学以及MLT中混合的影响,利用内部模型CGCAM和SAM的独特功能来表征扩展到湍流尺度的不稳定动力学,并在现实环境中进行深层混合。研究结果将通过解决GCM对涡旋扩散系数Kzz的低估,改进天气和气候模式中的混合参数化方案。本研究的目标是确定和量化大尺度(平均和潮汐)和GW环境,使KHI T&K动态,并解释其空间尺度和强度;通过高分辨率模型量化KHI T&K动力学的多样性,以及它们对MLT能量耗散、混合和影响的影响;并采用我们的KHI T&K模型来评估它们对能量耗散率、混合率和隐含Kzz的增强,相对于GW破裂的预期。解决这些研究目标的分析和建模方法将采用由USU高级中层温度成像仪(AMTM) OH气辉成像和GATS SAAMER雷达和激光雷达对智利火地岛和阿拉斯加Poker Flat的风、温度和钠密度进行的KHI T&K观测,以指导代表性的建模环境(例如GW和潮汐切变,多尺度叠加)。根据这些观察结果,将进行大范围的KHI T&K模拟,以捕捉不同环境条件下响应的多样性,并评估KHI T&K混合,从而能够定义代表剪切层尺度、理查德森数和雷诺数的KHI Kzz参数。这项研究将直接导致更好地理解MLT中未解决的混合动力学,以及它们如何影响组成粒子和能量传输到更高的大气水平。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyler Mixa其他文献

Coordinated Radar, UAV and balloon Observations of Atmospheric Turbulence at Syowa Station (JARE65)
昭和站大气湍流的雷达、无人机和气球协调观测(JARE65)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hubert Luce;Abhiram Doddi;Dale Lawrence;Tyler Mixa;Masanori Yabuki;Koji Nishimura;Hiroyuki Hashiguch
  • 通讯作者:
    Hiroyuki Hashiguch

Tyler Mixa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Impacts of phenology on disease transmission dynamics
物候对疾病传播动态的影响
  • 批准号:
    10813397
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
Arbovirus population biology: temperature impacts on selection and collective dynamics
虫媒病毒种群生物学:温度对选择和集体动态的影响
  • 批准号:
    10568405
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
Listening while wearing hearing protection: performance dynamics, choice to wear, and impacts of training
佩戴听力保护装置时聆听:表现动态、佩戴选择以及训练的影响
  • 批准号:
    10527804
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
Dynamics of multiphase plumes in sheared stratified crossflows: implications for managing the environmental impacts of volcanic eruptions (Ref: 4659)
剪切分层横流中多相羽流的动力学:对管理火山喷发环境影响的影响(参考文献:4659)
  • 批准号:
    2859346
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Studentship
Kelvin-Helmholtz Instability and Magnetosonic Wave Emission Along Bursty Bulk Flow Channel Boudaries: Impacts on Near-Earth Plasma Sheet Dynamics During Substorms
沿突发散装流通道边界的开尔文-亥姆霍兹不稳定性和磁声波发射:亚暴期间对近地等离子体片动力学的影响
  • 批准号:
    2314759
  • 财政年份:
    2023
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Explore Impacts of Head Motion on Cerebrospinal Fluid Dynamics using Simulation and Real-Time Medical Imaging
使用仿真和实时医学成像探索头部运动对脑脊液动力学的影响
  • 批准号:
    2232598
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
ANSWERS: Dynamics and Impacts of Electrons and Ions in the Earth’s Magnetosphere-Ionosphere System
答案:地球磁层-电离层系统中电子和离子的动力学和影响
  • 批准号:
    2149787
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Impacts of recent anthropogenic changes on peatland carbon dynamics
最近的人为变化对泥炭地碳动态的影响
  • 批准号:
    RGPIN-2018-06598
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and predicting ocean warming impacts on food web dynamics
了解和预测海洋变暖对食物网动态的影响
  • 批准号:
    547305-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Assessing the impacts of climate change on global vertebrate range dynamics, extinction risks, and colonization opportunities
评估气候变化对全球脊椎动物分布范围动态、灭绝风险和殖民机会的影响
  • 批准号:
    569938-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了