Fast and Robust Algorithms with Partial Data Access
具有部分数据访问功能的快速、稳健的算法
基本信息
- 批准号:2228814
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The demand for fast data handling is prevalent in the use of most new technologies and scientific endeavors, especially in autonomous systems, communication networks, healthcare, data storage systems, and economic and financial markets. Some of the challenges encountered often stem from the need to quickly recover data, or to quickly make irrevocable decisions, based only on partial information about the input. In addition, information symbols may be misaligned or may contain significant amounts of noise, because of either random physical processes, adversarial behavior, or human or machine errors. Thus, unrestricted access to clean data is often an unrealistic expectation, which leads to a pressing need for creative methods to fight these challenges. The project will address such challenges by developing novel techniques inspired from coding theory, learning theory and machine learning, as well as graph theory and optimization, to build and analyze desirable algorithmic solutions. The outcomes of the project have the potential to be deployed in DNA data storage technologies, communication systems, network systems, and settings in which machine learning may enhance algorithmic guarantees. The project will broaden participation in computing by actively involving in research both undergraduate students and underrepresented minorities. The research will be broadly disseminated through presentations in workshops, seminars, and conferences, and it will be integrated in undergraduate and graduate courses. The project will advance knowledge by developing efficient, robust, and reliable algorithms that can deal with misaligned or badly damaged data and algorithms that only have partial or restricted access to the data. The research will address three specific areas. First, it will focus on error-correcting codes that can withstand adversarial or random insertion and deletion errors, when the algorithm is given only a partial view of the data, namely in the setting of local decoding. Secondly, it will study data recovery in a particular learning model, namely when the noise damages the attributes of the data. Thirdly, it will focus on algorithms that can only access the data in an online fashion and must make irreversible decisions, both in classical settings as well as in settings where the algorithms may be enhanced with machine learning advice. The project aims to develop state-of-the-art tools and techniques to analyze limitations of current algorithmic techniques in the above models, and to propose adequate models that bypass such limitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大多数新技术和科学努力的使用中,特别是在自治系统、通信网络、医疗保健、数据存储系统以及经济和金融市场中,对快速数据处理的需求是普遍存在的。遇到的一些挑战通常源于需要快速恢复数据,或仅基于有关输入的部分信息快速做出不可撤销的决策。此外,由于随机的物理过程、对抗行为或人为或机器错误,信息符号可能会不对齐或包含大量的噪声。因此,不受限制地访问干净数据往往是一个不切实际的期望,这导致迫切需要创造性的方法来应对这些挑战。该项目将通过开发受编码理论、学习理论和机器学习以及图论和优化启发的新技术来解决这些挑战,以构建和分析理想的算法解决方案。该项目的成果有可能部署在DNA数据存储技术、通信系统、网络系统以及机器学习可以增强算法保证的环境中。该项目将通过积极参与本科生和未被充分代表的少数群体的研究,扩大对计算机的参与。这项研究将通过讲习班、研讨会和会议的报告广泛传播,并将纳入本科和研究生课程。该项目将通过开发高效、稳健和可靠的算法来推进知识的发展,这些算法可以处理不对齐或严重损坏的数据,以及只能部分或限制访问数据的算法。这项研究将涉及三个具体领域。首先,它将专注于纠错码,可以承受对抗性或随机插入和删除错误,当算法只给出数据的部分视图时,即在局部解码的设置中。其次,它将研究特定学习模型下的数据恢复,即当噪声破坏数据的属性时。第三,它将专注于只能以在线方式访问数据的算法,并且必须做出不可逆转的决定,无论是在经典设置中,还是在算法可以通过机器学习建议增强的设置中。该项目旨在开发最先进的工具和技术来分析上述模型中当前算法技术的局限性,并提出绕过这些局限性的适当模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximation Algorithms for Directed Weighted Spanners
定向加权扳手的近似算法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Grigorescu, Elena Kumar
- 通讯作者:Grigorescu, Elena Kumar
On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors
关于汉明和插入删除错误的宽松本地可解码码
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Block, Alexander R.;Blocki, Jeremiah;Cheng, Kuan;Grigorescu, Elena;Li, Xin;Zheng, Yu;Zhu, Minshen
- 通讯作者:Zhu, Minshen
How to Make Your Approximation Algorithm Private: A Black-Box Differentially-Private Transformation for Tunable Approximation Algorithms of Functions with Low Sensitivity
- DOI:10.48550/arxiv.2210.03831
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Jeremiah Blocki;Elena Grigorescu;Tamalika Mukherjee;Samson Zhou
- 通讯作者:Jeremiah Blocki;Elena Grigorescu;Tamalika Mukherjee;Samson Zhou
Learning-Augmented Algorithms for Online Linear and Semidefinite Programming
- DOI:10.48550/arxiv.2209.10614
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Elena Grigorescu;Young-San Lin;Sandeep Silwal;Maoyuan Song;Samson Zhou
- 通讯作者:Elena Grigorescu;Young-San Lin;Sandeep Silwal;Maoyuan Song;Samson Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Grigorescu其他文献
Nearly optimal sparse group testing
接近最优的稀疏组测试
- DOI:
10.1109/allerton.2016.7852259 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
V. Gandikota;Elena Grigorescu;S. Jaggi;Samson Zhou - 通讯作者:
Samson Zhou
Transitive-Closure Spanners
传递闭包扳手
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Arnab Bhattacharyya;Elena Grigorescu;Kyomin Jung;Sofya Raskhodnikova;David P. Woodruff - 通讯作者:
David P. Woodruff
An Optimal Lower Bound for Monotonicity Testing over Hypergrids
超网格单调性测试的最佳下界
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
Elena Grigorescu;Karl Wimmer;Alan Guo;R. Rubinfeld;Uri Stemmer;Janardhan Kulkarni;Benjamin Moseley;Adi Rosen - 通讯作者:
Adi Rosen
A local decision test for sparse polynomials
稀疏多项式的局部决策检验
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0.5
- 作者:
Elena Grigorescu;Kyomin Jung;R. Rubinfeld - 通讯作者:
R. Rubinfeld
A Unified Framework for Testing Linear-Invariant Properties
测试线性不变属性的统一框架
- DOI:
10.1002/rsa.20507 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Arnab Bhattacharyya;Elena Grigorescu;A. Shapira - 通讯作者:
A. Shapira
Elena Grigorescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Grigorescu', 18)}}的其他基金
AF: Small: New Efficient Algorithms for Complex Data
AF:小:复杂数据的新高效算法
- 批准号:
1910411 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CIF: Small: Ultra-Efficient Codes for Communication and Verifiable Storage
CIF:小型:用于通信和可验证存储的超高效代码
- 批准号:
1910659 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
EAGER: Complexity of Computation on Codes and Lattices
EAGER:码和格计算的复杂性
- 批准号:
1649515 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Robust Derivative-Free Algorithms for Complex Optimisation Problems
用于复杂优化问题的鲁棒无导数算法
- 批准号:
DE240100006 - 财政年份:2024
- 资助金额:
$ 49.98万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Robust Algorithms for Corrupted Data
职业:针对损坏数据的稳健算法
- 批准号:
2238821 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Title: Moving medically certifiable AI algorithms from the Cloud and onto the Medi-OS Operating System of Medical Devices to automate, make robust and increase uptake of AI in healthcare: Use-case will be community-based spirometry.
标题:将医学认证的人工智能算法从云端转移到医疗设备的 Medi-OS 操作系统上,以实现自动化、稳健并增加人工智能在医疗保健领域的采用:用例将是基于社区的肺活量测定。
- 批准号:
10064449 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Collaborative R&D
Robust and scalable algorithms for learning hidden structures in sparse network data with the aid of side information
借助辅助信息学习稀疏网络数据中隐藏结构的鲁棒且可扩展的算法
- 批准号:
2311024 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
- 批准号:
2229756 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant














{{item.name}}会员




