Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.

合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。

基本信息

  • 批准号:
    2229012
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The project goal is to build a comprehensive theoretical and algorithmic framework of AI/ML for detection, tracking, forecasting and mitigation of extreme and rare but consequential events in power systems. The overwhelming majority of conventional applications of AI/ML involve learning the `middle' of the distribution. Applications have become mostly routine exercises in `interpolation' in both industry and academia, thanks to the Deep Learning (DL) breakthrough. Based on copious amounts of `typical' information, a generic DL task focuses on designing algorithms which extract and build features which represent the most common characteristics of the massive scientific data. The difference between this conventional DL situation and DL for extreme events is that, in the latter setting, the task is one of extrapolation. Moreover, massive scientific data, beneficial in normal regimes, becomes a curse for extrapolation which focuses on extracting rare but significant events -- the black swans -- which are, like a needle in a haystack, notoriously difficult to detect and track, and then use to make reliable forecasts and possible mitigations as events develop. In other words, based on very limited information, the research objective is to extract regularity patterns, which can persist over long spatial and temporal scales, that then lead to potential rare extremes. The PI will study models that relate to such as the extreme heat of the summer of 2020 or the extreme cold in Texas in the spring of 2021; power system blackouts, like the 2004 East Coast blackout. The methods will have even broader applicability, for example, if prediction and detection of failures in other physical and cyber networks. PI will investigate specific objectives in three areas: (A) Physics-Informed Statistical Modeling for power systems, (B) Computational Methods of Inference for Extremes in power systems, and (C) Learning and Quantification of Errors in the Models. They will apply the methodology developed within the novel framework to including early detection of rare but devastating cascading failures in power systems. The mathematical/theoretical core of the methodology will consist in integration of power-system-specific constraints into the general Extreme Value Theory (EVT). This integration will be achieved via synthesis of EVT with the complementary approaches from the Physics Informed Machine Learning, Probabilistic Graphical Models and Optimal Transport theory. On the computational side, PI will utilize EVT to develop efficient model calibration, inference and learning algorithms for large-scale stochastic systems, described via properly parameterized non-linear real or complex-valued algebraic and differential equations with random stochastic input. Moreover, their coupled theoretical and computational efforts will be useful in a broader context for extending the rare event control and prevention methodology to other systems and applications of national importance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是建立一个全面的人工智能/机器学习理论和算法框架,用于检测、跟踪、预测和缓解电力系统中极端和罕见但后果重大的事件。绝大多数AI/ML的传统应用都涉及到学习分布的“中间”。由于深度学习(DL)的突破,在工业界和学术界,“插值”的应用已经成为常规练习。基于大量的“典型”信息,通用深度学习任务侧重于设计算法,提取和构建代表大量科学数据中最常见特征的特征。这种传统的深度学习情况与极端事件的深度学习之间的区别在于,在后一种情况下,任务是外推。此外,在正常体制中有益的大量科学数据,成为了外推的祸根,这种外推侧重于提取罕见但重要的事件——黑天鹅——它们就像大海捞针,众所周知难以探测和跟踪,然后用来做出可靠的预测,并随着事件的发展采取可能的缓解措施。换句话说,基于非常有限的信息,研究目标是提取规律模式,这些模式可以持续很长时间和空间尺度,然后导致潜在的罕见极端。PI将研究与诸如2020年夏季的极端高温或2021年春季德克萨斯州的极端寒冷相关的模型;电力系统停电,比如2004年东海岸的停电。这些方法将具有更广泛的适用性,例如,用于预测和检测其他物理和网络中的故障。PI将研究三个领域的具体目标:(A)基于物理的电力系统统计建模,(B)电力系统极值推断的计算方法,以及(C)模型中误差的学习和量化。他们将应用在新框架内开发的方法,包括电力系统中罕见但破坏性的级联故障的早期检测。该方法的数学/理论核心将包括将电力系统特定约束纳入一般极值理论(EVT)。这种整合将通过EVT与物理信息机器学习、概率图形模型和最优传输理论的互补方法的综合来实现。在计算方面,PI将利用EVT为大规模随机系统开发有效的模型校准,推理和学习算法,通过适当参数化的非线性实值或复值代数和微分方程描述随机随机输入。此外,他们在理论和计算方面的耦合努力将有助于在更广泛的范围内将罕见事件控制和预防方法扩展到具有国家重要性的其他系统和应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Chertkov其他文献

Space-Time Bridge-Diffusion
时空桥-扩散
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamidreza Behjoo;Michael Chertkov
  • 通讯作者:
    Michael Chertkov
Error correction on a tree: an instanton approach.
树上的纠错:瞬子方法。
  • DOI:
    10.1103/physrevlett.93.198702
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Vladimir Y. Chernyak;Michael Chertkov;Mikhail Stepanov;Bane V. Vasic
  • 通讯作者:
    Bane V. Vasic
Mixing Artificial and Natural Intelligence: From Statistical Mechanics to AI and Back to Turbulence
  • DOI:
    10.48550/arxiv.2403.17993
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Chertkov
  • 通讯作者:
    Michael Chertkov
INSTANTON FOR RANDOM ADVECTION
即时随机平流
  • DOI:
    10.1103/physreve.55.2722
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Michael Chertkov
  • 通讯作者:
    Michael Chertkov
Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
电力市场的物理信息机器学习:NYISO 案例研究

Michael Chertkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Chertkov', 18)}}的其他基金

IGE: Integrating Data Science into the Applied Mathematics PhD: Generalized Skills for Non-Academic Careers
IGE:将数据科学融入应用数学博士:非学术职业的通用技能
  • 批准号:
    2325446
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RAPID: Infer and Control Global Spread of Corona-Virus with Graphical Models
RAPID:用图形模型推断和控制冠状病毒的全球传播
  • 批准号:
    2027072
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Power Grid Spectroscopy
合作研究:电网光谱学
  • 批准号:
    1128501
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EMT/MISC: Collaborative Research: Harnessing Statistical Physics for Computing and Communication
EMT/MISC:合作研究:利用统计物理进行计算和通信
  • 批准号:
    0829945
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229074
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229073
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229075
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229108
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229408
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229409
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229109
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了