Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
基本信息
- 批准号:2229108
- 负责人:
- 金额:$ 10.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern power systems (MPS) are complex systems involving conventional and renewable generators, smart distribution networks, and advanced information exchanges. High penetration of random low-inertia renewable energy sources, increased natural disasters such as the 2021 Winter storm Uri, and unprecedented man-made cyber-physical attacks have posed a threat to the reliability and security of MPS. Several cascading failures in MPS started with smaller undetected contingencies such as California's wildfires (e.g., Camp Creek Fire, Zogg Fire, and Dixie Fire) caused by equipment failures. Smaller contingency events, particularly on the distribution side of the grid, may not be directly detected. This project focuses on the early detection and risk prediction of hidden contingencies in MPS. The research fits within efforts to enhance the resilience of the U.S. power grid and move toward carbon-free energy infrastructure. Therefore, it has broader impacts on the carbon-free economy and social welfare. This project will also enhance teaching, training, and learning in mathematics and statistics, renewable energy, smart grids, and green technologies. The team plans to develop new courses for undergraduate and graduate students to facilitate the training of next-generation scientists and engineers. Every effort will be made to promote the participation of underrepresented students in the research project.This research project introduces a novel framework of stochastic prediction, estimation, and early detection (SPEED) for MPS. Covering a broad range of cyber-physical contingencies (CPC), this research will have the following distinct and novel aims and outcomes. First, the project introduces a new stochastic hybrid system (SHS) model, consisting of continuous dynamics and discrete events. Second, the project will develop new estimation and prediction computational methods. Starting from the Wonham filter for hidden Markov chains, to detect discrete jump changes, this research will focus on finding more computationally feasible schemes. Furthermore, rates of convergence of the algorithms will be obtained, and extensive numerical experiments will be performed. Third, fundamental concepts such as joint observability will be introduced. New estimation algorithms will be developed for joint estimation and prediction of CPC in SHS. Fourth, since early and quick detection of abrupt changes is vitally important for the risk management of MPS, this project will provide a new computable scheme based on Markov chain approximation for optimal stopping and will quantitatively predict risks of potential near-future cascading CPC. Fifth, evaluation and validation of the theoretical findings will be conducted through utility-level operational data, large-scale power grid simulations, and hardware-in-the-loop emulation on a microgrid. The synthetic operational and summary data of the distribution power grids and transmission systems will be incorporated into the validation and evaluation of the study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电力系统(MPS)是一个复杂的系统,涉及传统和可再生发电机、智能配电网络和先进的信息交换。随机低惯性可再生能源的高度渗透,2021年冬季风暴乌里等自然灾害的增加,以及前所未有的人为网络物理攻击,对MPS的可靠性和安全性构成了威胁。MPS中的一些级联故障始于较小的未被发现的突发事件,例如由设备故障引起的加利福尼亚野火(例如Camp Creek Fire, Zogg Fire和Dixie Fire)。较小的突发事件,特别是在电网的配电侧,可能无法直接检测到。本项目主要研究MPS中潜在突发事件的早期发现和风险预测。这项研究符合提高美国电网弹性和向无碳能源基础设施迈进的努力。因此,它对无碳经济和社会福利具有更广泛的影响。该项目还将加强数学和统计学、可再生能源、智能电网和绿色技术方面的教学、培训和学习。研究组计划为培养下一代科学家和工程师,开发面向本科生和研究生的新课程。将尽一切努力促进代表性不足的学生参与研究项目。本研究计划提出一种新的MPS随机预测、估计和早期检测(SPEED)框架。本研究涵盖了广泛的网络物理偶然性(CPC),将具有以下独特而新颖的目标和结果。首先,引入了一种新的随机混合系统(SHS)模型,该模型由连续动力学和离散事件组成。第二,开发新的估算和预测计算方法。本研究将从隐马尔可夫链的Wonham滤波器开始,寻找更多计算上可行的方案来检测离散的跳跃变化。此外,算法的收敛速度将得到,并将进行广泛的数值实验。第三,介绍联合可观测性等基本概念。将开发新的估计算法来联合估计和预测SHS的CPC。第四,由于突变的早期和快速检测对于MPS的风险管理至关重要,本项目将提供一种新的基于马尔可夫链近似的最优停止的可计算方案,并将定量预测潜在的近期级联CPC的风险。第五,将通过公用事业级运行数据、大规模电网仿真和微电网硬件在环仿真对理论结果进行评估和验证。配电网和输电系统的综合运行和汇总数据将纳入研究的验证和评估。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Optimal Frequency Control under communication packet loss in multi-agent electric energy systems
- DOI:10.1016/j.automatica.2023.111088
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:S. Xie;M. Nazari;L. Wang;G. Yin;Xinyu Zhang
- 通讯作者:S. Xie;M. Nazari;L. Wang;G. Yin;Xinyu Zhang
Numerical Solutions for Detecting Contingency in Modern Power Systems
- DOI:10.1109/ictc57116.2023.10154790
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xiaohang Ma;Hongjiang Qian;L. Wang;M. Nazari;G. Yin
- 通讯作者:Xiaohang Ma;Hongjiang Qian;L. Wang;M. Nazari;G. Yin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang George Yin其他文献
Convergence rates of Markov chain approximation methods for controlled diffusions with stopping
- DOI:
10.1007/s11424-010-0148-5 - 发表时间:
2010-07-06 - 期刊:
- 影响因子:2.800
- 作者:
Qingshuo Song;Gang George Yin - 通讯作者:
Gang George Yin
Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties
- DOI:
10.1007/s11424-006-0022-7 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Gang George Yin;Shaobai Kan;Le Yi Wang - 通讯作者:
Le Yi Wang
Gang George Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang George Yin', 18)}}的其他基金
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 10.98万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
2114649 - 财政年份:2021
- 资助金额:
$ 10.98万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
1710827 - 财政年份:2017
- 资助金额:
$ 10.98万 - 项目类别:
Continuing Grant
Analysis, Algorithm Design, and Computation for Stochastic Systems and Optimization
随机系统和优化的分析、算法设计和计算
- 批准号:
1207667 - 财政年份:2012
- 资助金额:
$ 10.98万 - 项目类别:
Continuing Grant
Research on Stochastic Systems and Optimization: Analysis, Algorithms, and Computations
随机系统和优化研究:分析、算法和计算
- 批准号:
0907753 - 财政年份:2009
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Stochastic Optimization: Approximation Algorithms and Asymptotic Analysis
随机优化:近似算法和渐近分析
- 批准号:
0603287 - 财政年份:2006
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Recursive Algorithms and Regime Switching Models for Stochastic Optimization
随机优化的递归算法和机制切换模型
- 批准号:
0304928 - 财政年份:2003
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Optimization for Systems Under Uncertainty: Modeling, Asymptotic Analysis, and Recursive Algorithms
不确定性下的系统优化:建模、渐近分析和递归算法
- 批准号:
9877090 - 财政年份:1999
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
- 批准号:
9529738 - 财政年份:1996
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Stochastic Optimization
数学科学:随机优化研究
- 批准号:
9224372 - 财政年份:1993
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229012 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229075 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
- 批准号:
2229408 - 财政年份:2022
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
- 批准号:
2229409 - 财政年份:2022
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
- 批准号:
2229109 - 财政年份:2022
- 资助金额:
$ 10.98万 - 项目类别:
Standard Grant