AMPS: Compositional Data-Driven Modeling, Prediction and Control for Reconfigurable Renewable Energy Systems

AMPS:可重构可再生能源系统的组合数据驱动建模、预测和控制

基本信息

  • 批准号:
    2229435
  • 负责人:
  • 金额:
    $ 42.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The modern power grid is rapidly evolving towards a distributed and reconfigurable system dominated by renewable energy resources, represented by distributed generation, plug-in electric vehicles, energy storage, and demand-response resources. The goal of this project is to develop computational tools to address new challenges arising in modeling and control of the distributed and reconfigurable power systems subject to heterogeneous disturbances. This objective will be addressed by the development of new mathematical algorithms and theory that will be deployed in power system applications, leveraging the fundamental knowledge from machine learning, dynamical systems, and control theory. This project will contribute to the NSF mission of advancing STEM through the training of two graduate students and curricular development through the design of courses on the topics of cyber-physical microgrids and machine learning for dynamical systems. This project aims to devise compositional data-driven modeling, prediction, and control methods to ensure the transient stability of the distributed and reconfigurable renewable-energy-dominant power systems, which are inherently nonlinear, high dimensional, partially observed, and subject to heterogeneous uncertainties. This project will illuminate the machine learning advances for developing scalable and cohesive approaches to solve the fundamental challenge of in system’s operation. Specifically, the principal investigators (PIs) will (1) develop a noise-resilient compositional bilinear operator theoretic method to identify a control-amenable model for the transient dynamics of reconfigurable renewable energy systems; (2) devise a stochastic dynamics model for the partially-observed system by integrating a rigorous statistical closure formulation and a physics-informed topology-aware data-driven model; and (3) integrate the developed models with the optimal control algorithms to improve the transient stability of the distributed and reconfigurable system in a predictive manner towards a real-time autonomous operation capability. The PIs anticipate that these outcomes will substantially enrich and expand the current research on dynamic modeling and control of large-scale interconnected systems and support the development of these techniques for applications of the next-generation distribution grids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电网正在快速向以可再生能源为主导、以分布式发电、插电式电动汽车、储能、需求响应资源等为代表的分布式可重构系统发展。该项目的目标是开发计算工具,以解决受异质扰动影响的分布式可重构电力系统建模和控制中出现的新挑战。这一目标将通过开发新的数学算法和理论来实现,这些算法和理论将部署在电力系统应用中,利用机器学习、动力系统和控制理论的基础知识。该项目将通过培训两名研究生来推进 STEM,并通过设计有关网络物理微电网和动力系统机器学习主题的课程来开发课程,从而为 NSF 的使命做出贡献。该项目旨在设计组合数据驱动的建模、预测和控制方法,以确保分布式和可重构的可再生能源主导电力系统的暂态稳定性,这些电力系统本质上是非线性的、高维的、部分可观测的,并且受到异构不确定性的影响。该项目将阐明机器学习的进展,以开发可扩展和有凝聚力的方法来解决系统运行的基本挑战。具体来说,主要研究人员(PI)将(1)开发一种抗噪声组合双线性算子理论方法,以确定可重构可再生能源系统瞬态动力学的可控模型; (2)通过集成严格的统计闭包公式和物理信息拓扑感知数据驱动模型,为部分观测系统设计随机动力学模型; (3)将开发的模型与最优控制算法相结合,以预测的方式提高分布式可重构系统的瞬态稳定性,以实现实时自主运行能力。 PI 预计这些成果将大大丰富和扩展当前对大规模互连系统的动态建模和控制的研究,并支持这些技术在下一代配电网应用中的开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear non-stationary dynamics
复杂非线性非平稳动力学的数据驱动统计随机代理建模策略
  • DOI:
    10.1016/j.jcp.2023.112085
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Qi, Di;Harlim, John
  • 通讯作者:
    Harlim, John
Data-Driven Modeling of Microgrid Transient Dynamics Through Modularized Sparse Identification
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Li其他文献

Event-triggered synchronization for second-order nodes in complex dynamical network with time-varying coupling matrices
时变耦合矩阵复杂动态网络二阶节点的事件触发同步
  • DOI:
    10.1007/s11071-019-05320-y
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yan Li;Chen Weisheng;Fang Xinpeng;Dai Hao
  • 通讯作者:
    Dai Hao
Granular Fuzzy Rule-Based Modeling With Incomplete Data Representation
具有不完整数据表示的粒度模糊基于规则的建模
  • DOI:
    10.1109/tcyb.2021.3071145
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Xingchen Hu;Yinghua Shen;Witold Pedrycz;Yan Li;Guohua Wu
  • 通讯作者:
    Guohua Wu
Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway
腺苷通过激活JNK/AP-1通路促进脓毒症模型Treg细胞中Foxp3的表达
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Bao;Jiong Hou;Yan Li;Jinjun Bian;Xiaoming Deng;Xiaoyan Zhu;Tao Yang
  • 通讯作者:
    Tao Yang
Finite-Time Synchronization of Memristor -Based Recurrent Neural Networks With Inertial Items and Mixed Delays
具有惯性项和混合延迟的基于忆阻器的递归神经网络的有限时间同步
PDα -type iterative learning control for fractional delay systems
分数延迟系统的PDα型迭代学习控制

Yan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Li', 18)}}的其他基金

Human Stem Cell Fate Decisions Dictated by Decoupled Biophysical Cues
人类干细胞的命运决定由解耦的生物物理线索决定
  • 批准号:
    1917618
  • 财政年份:
    2020
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Maintaining Energy Homeostasis to Preserve Biological Properties during Culture Expansion of Human Mesenchymal Stem Cells
合作研究:在人间充质干细胞培养扩增过程中维持能量稳态以保留生物特性
  • 批准号:
    1743426
  • 财政年份:
    2017
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
CAREER:Engineering Brain-region-specific Organoids Derived from Human Stem Cells
职业:工程化源自人类干细胞的大脑区域特异性类器官
  • 批准号:
    1652992
  • 财政年份:
    2017
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Conference on Frontiers of Hierarchical Modeling in Observational Studies, Complex Surveys and Big Data, May 29-31, 2014
观察研究、复杂调查和大数据层次建模前沿会议,2014 年 5 月 29-31 日
  • 批准号:
    1361869
  • 财政年份:
    2014
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
BRIGE: Engineering a BioMatrix Library Derived from Induced Pluripotent Stem Cells
BRIGE:工程化源自诱导多能干细胞的 BioMatrix 文库
  • 批准号:
    1342192
  • 财政年份:
    2013
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
SBIR Phase I: Micro/Nanofluidic Protein Profiler for Pathogen Detection
SBIR 第一阶段:用于病原体检测的微/纳流体蛋白质分析仪
  • 批准号:
    0441585
  • 财政年份:
    2005
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant

相似海外基金

Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
  • 批准号:
    2245492
  • 财政年份:
    2023
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Proportionality based association metrics applied to count compositional data
基于比例的关联度量应用于计算成分数据
  • 批准号:
    573217-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
  • 批准号:
    2145565
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Model-based clustering of high dimensional discrete data and compositional data
高维离散数据和组合数据的基于模型的聚类
  • 批准号:
    RGPIN-2021-03812
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for microbiome compositional data
微生物组组成数据的方法
  • 批准号:
    10338342
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
Compositional Data Methodology in the Context of Quantitative Fatty Acid Signature Analysis
定量脂肪酸特征分析背景下的成分数据方法
  • 批准号:
    RGPIN-2022-03217
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling
根据地震、重力、地形数据和岩石学模型的概率联合反演南极洲的热力和成分结构
  • 批准号:
    2203487
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Standard Grant
Methods for microbiome compositional data
微生物组组成数据的方法
  • 批准号:
    10580718
  • 财政年份:
    2022
  • 资助金额:
    $ 42.92万
  • 项目类别:
Theory and Methods for Tree-Informed High-Dimensional Compositional Data Analysis
树型高维成分数据分析的理论与方法
  • 批准号:
    2113458
  • 财政年份:
    2021
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Continuing Grant
Network of automata with data based on compositional active learning
基于组合主动学习的数据自动机网络
  • 批准号:
    21H03415
  • 财政年份:
    2021
  • 资助金额:
    $ 42.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了