Compositional Data Methodology in the Context of Quantitative Fatty Acid Signature Analysis
定量脂肪酸特征分析背景下的成分数据方法
基本信息
- 批准号:RGPIN-2022-03217
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the marine ecosystem, estimating predator diets can be especially challenging since feeding cannot typically be directly observed. In this context, and using nonparametric statistical techniques, quantitative fatty acid signature analysis (QFASA) was devised as an indirect method of estimating predator diets and has since successfully been applied to a variety of seabird species, marine mammals and fish. Recently, my research group developed maximum unified fatty acid signature analysis (MUFASA) which, like QFASA, also utilizes the relationship between predator and prey fatty acids but in the maximum likelihood estimation (MLE) framework. While these diet estimation methods have the advantage of being non-invasive, they rely on several assumptions that are difficult to verify in practice, but which can significantly impact results. Additionally, both the fatty acid signatures and diet estimates represent compositional data, commonly defined as multivariate data with components restricted to sum to a constant. These constraints, as well as other features of the data, such as the relatively large number of components and the propensity of the data to involve zeros, impose statistical challenges. In collaboration with biologists studying marine mammal populations, the long-term objective of my research program is to address current limitations inherent in FASA methods and provide improvements for more accurate diet estimation through novel statistical methodology appropriate for compositional data. This research will also simultaneously advance the area of compositional data analysis with techniques that can be extended to a variety of applications. One short-term objective of this research is the development of new variable selection techniques for compositional data. This aspect of my research is motivated by the important, but largely outstanding problem of how to choose the best subset of prey types and/or fatty acids to include in the models. Another goal is the incorporation of robustness into FASA methods to handle deviations from model assumptions. The newly developed likelihood structure will play a pivotal role in addressing these objectives. Being a new procedure, MUFASA has not yet been extensively studied and improvements, such as extensions to more flexible parametric densities, will also be considered. This research will contribute to our understanding of the advantages and limitations of FASA techniques for marine predator diet estimation, address some of the computational challenges associated with these methods, and potentially yield more accurate estimates of diet. The new methodology will be made accessible to relevant users through the existing R packages QFASA and Compositional. My proposed research will provide opportunities for interdisciplinary collaborations between statistics and biology, as well as training driven by real-life data and applications for 5 undergraduate and 4 graduate students.
在海洋生态系统中,估计捕食者的饮食尤其具有挑战性,因为通常无法直接观察进食情况。在此背景下,使用非参数统计技术,定量脂肪酸特征分析(QFASA)被设计为估计捕食者饮食的间接方法,并已成功应用于各种海鸟物种、海洋哺乳动物和鱼类。最近,我的研究小组开发了最大统一脂肪酸特征分析(MUFASA),与 QFASA 一样,它也利用捕食者和猎物脂肪酸之间的关系,但采用最大似然估计(MLE)框架。虽然这些饮食估计方法具有非侵入性的优点,但它们依赖于一些在实践中难以验证的假设,但可能会显着影响结果。此外,脂肪酸特征和饮食估计值都代表成分数据,通常定义为多变量数据,其组成部分仅限于总和为常数。这些限制以及数据的其他特征(例如相对较多的组成部分和数据涉及零的倾向)带来了统计挑战。 我的研究计划的长期目标是与研究海洋哺乳动物种群的生物学家合作,解决目前 FASA 方法固有的局限性,并通过适合成分数据的新颖统计方法来改进更准确的饮食估计。这项研究还将同时推进成分数据分析领域的发展,其技术可扩展到各种应用。这项研究的一个短期目标是开发用于成分数据的新变量选择技术。我的研究的这一方面是由一个重要但很大程度上突出的问题推动的,即如何选择模型中包含的最佳猎物类型和/或脂肪酸子集。另一个目标是将稳健性纳入 FASA 方法,以处理模型假设的偏差。新开发的可能性结构将在实现这些目标方面发挥关键作用。作为一种新程序,MUFASA 尚未得到广泛研究,还将考虑改进,例如扩展到更灵活的参数密度。这项研究将有助于我们了解 FASA 技术用于海洋捕食者饮食估计的优点和局限性,解决与这些方法相关的一些计算挑战,并有可能产生更准确的饮食估计。新方法将通过现有的 R 软件包 QFASA 和 Compositional 向相关用户开放。 我提出的研究将为统计学和生物学之间的跨学科合作提供机会,并为 5 名本科生和 4 名研究生提供由现实生活数据和应用驱动的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stewart, Connie其他文献
Predictors of Success in the NCLEX-RN for Canadian Graduates.
- DOI:
10.12927/cjnl.2020.26103 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:0
- 作者:
McCloskey, Rose;Stewart, Connie;Burke, Lisa Keeping - 通讯作者:
Burke, Lisa Keeping
A Dirichlet Regression Model for Compositional Data with Zeros
- DOI:
10.1134/s1995080218030198 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:0.7
- 作者:
Tsagris, Michail;Stewart, Connie - 通讯作者:
Stewart, Connie
Managing the Essential Zeros in Quantitative Fatty Acid Signature Analysis
- DOI:
10.1007/s13253-010-0040-8 - 发表时间:
2011-03-01 - 期刊:
- 影响因子:1.4
- 作者:
Stewart, Connie;Field, Christopher - 通讯作者:
Field, Christopher
Stewart, Connie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stewart, Connie', 18)}}的其他基金
New statistical tools for quantitative fatty acid signature analysis and the development of an accompanying R package
用于定量脂肪酸特征分析的新统计工具以及随附 R 包的开发
- 批准号:
RGPIN-2015-05711 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
New statistical tools for quantitative fatty acid signature analysis and the development of an accompanying R package
用于定量脂肪酸特征分析的新统计工具以及随附 R 包的开发
- 批准号:
RGPIN-2015-05711 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
New statistical tools for quantitative fatty acid signature analysis and the development of an accompanying R package
用于定量脂肪酸特征分析的新统计工具以及随附 R 包的开发
- 批准号:
RGPIN-2015-05711 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
New statistical tools for quantitative fatty acid signature analysis and the development of an accompanying R package
用于定量脂肪酸特征分析的新统计工具以及随附 R 包的开发
- 批准号:
RGPIN-2015-05711 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
New statistical tools for quantitative fatty acid signature analysis and the development of an accompanying R package
用于定量脂肪酸特征分析的新统计工具以及随附 R 包的开发
- 批准号:
RGPIN-2015-05711 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Inference on the diet of predators using fatty acid signatures
使用脂肪酸特征推断捕食者的饮食
- 批准号:
321738-2006 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Inference on the diet of predators using fatty acid signatures
使用脂肪酸特征推断捕食者的饮食
- 批准号:
321738-2006 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Inference on the diet of predators using fatty acid signatures
使用脂肪酸特征推断捕食者的饮食
- 批准号:
321738-2006 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
EU-Funded
Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
- 批准号:
2310943 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Creating a Shared Purpose and Methodology for Curating Data to Prevent Domestic and Sexual Violence at a Systems Level
创建共同的目的和方法来管理数据,以在系统层面预防家庭暴力和性暴力
- 批准号:
465292 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Operating Grants
Statistical Methodology for Correlated Data in Health Sciences
健康科学相关数据的统计方法
- 批准号:
RGPIN-2019-04741 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Emerging data fusion methodology in multisensor integrated navigation for challenging environments
适用于挑战性环境的多传感器集成导航中的新兴数据融合方法
- 批准号:
RGPIN-2017-05717 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
The DEPRESsion Screening Data (DEPRESSD) Project: A Novel International Individual Participant Data Meta-analysis Collaboration to Advance Research on Depression Screening Tool Accuracy, Develop Statistical Methodology, and Conduct Meta-Research
抑郁症筛查数据 (DEPRESSD) 项目:一项新颖的国际个人参与者数据荟萃分析合作,旨在推进抑郁症筛查工具准确性的研究、开发统计方法并进行荟萃研究
- 批准号:
461874 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Operating Grants
Statistical Methodology for Prediction Modelling to Improve Depression Screening with Individualized Risk Estimates in the Context of Individual Participant Data Meta-analysis
预测建模的统计方法,在个体参与者数据荟萃分析的背景下通过个体化风险估计来改进抑郁症筛查
- 批准号:
444496 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Operating Grants














{{item.name}}会员




