SWIFT: Electric Field Controlled Integrated Multiferroic Radio Frequency Devices for Interference Immune Broadband Wireless Systems
SWIFT:用于抗干扰宽带无线系统的电场控制集成多铁射频器件
基本信息
- 批准号:2229440
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wireless networks are a mainstay of modern society, enabling communication, synchronization, and organization though 5th generation networks (5G) and the Internet-of-Things (IoT). Growth in the number of network participants and therefore the amount of machine-to-machine communication has exacerbated radio spectrum scarcity, making it increasingly valuable: its efficient utilization is vital. Devices like smartphones, radios, televisions, routers, vehicles, and computers are approaching the limits of existing approaches to spectrum sharing. Smartphone developers already require upwards of 100 unique filters to serve the needs of different communication schemes such as Bluetooth, LTE, AM and FM radio, 5G, and Zigbee. This project will investigate the use of novel self-biased, multiferroic materials in conjunction with novel algorithms to learn how other network participants are using time and spectrum and cooperatively adapt to increase the communication possible within a limited spectrum. The new multiferroic materials, devices, and circuits will enable very rapidly adaptable filters, which in turn will enable monitoring, predicting, adapting to, and coexisting with other network participants. Instead of requiring that all network participants conform to a particular spectrum sharing protocol, the project advances a decentralized framework within which "smart" network participants learn predictive models of other, potentially legacy or passive, participants and use these models to maximize spectrum sharing efficiency. The end result is more communication among more network participants using the same amount of wireless spectrum, with greater resistance to jamming and more compact wireless devices such as smartphones and wireless sensors.The project uses novel material and device technologies to enable flexible, rapidly tunable filters within receivers that in turn enable implicit wireless environment monitoring and prediction. The gathered information will be used by jamming prevention techniques and transmission schedule prediction algorithms that enable scheduling of future transmissions to maximize spectrum sharing efficiency. Conventional ferromagnetic based RF components require a DC or variable external magnetic field bias for operation and tuning, making them power hungry, bulky, and impractical to integrate. This project leverages self-biased multiferroic hetero-structures enabled by enhancing the self-biasing of a magnetic insulator through interface exchange coupling between a stratified thin, highly magnetostrictive, metallic ferromagnetic layer and a layer of ferroelectric material to achieve total electric field control without needing any fixed or variable magnetic bias. The total electric field control of ferromagnetic resonators enables tunable, very low latency, integrated compact filters that require no DC magnetic bias. Algorithms will be developed alongside these highly reconfigurable filters to realize receivers that are impervious to various kinds of interference and more capable of characterizing their wireless environments, and this information will be used to learn predictive models of transmission patterns, enabling efficient spectrum sharing among network participants, without requiring them to adhere to a particular sharing protocol. The project will evaluate conventional approaches to transmission timeseries prediction such as long shortterm memories, but will also consider alternatives better supporting rapid search for efficient transmission schedules, including causal and distributed learning. These predictions will be used to inform the optimization of transmission schedules and channel use to avoid interference and improve goodput. The project will make scientific and engineering contributions in the areas of multiferroic materials, analog RF circuit design, network spectrum sharing, decentralized network protocols, and machine learning for predictive modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线网络是现代社会的支柱,通过第五代网络(5G)和物联网(IoT)实现通信、同步和组织。网络参与者数量的增长以及机器对机器通信量的增加加剧了无线电频谱的稀缺性,使其变得越来越有价值:其有效利用至关重要。智能手机、收音机、电视机、路由器、车辆和计算机等设备正在接近现有频谱共享方法的极限。智能手机开发人员已经需要超过100个独特的滤波器来满足不同通信方案的需求,如蓝牙,LTE,AM和FM收音机,5G和Zigbee。该项目将研究使用新型自偏置多铁性材料与新型算法,以了解其他网络参与者如何使用时间和频谱,并在有限的频谱内合作适应以增加通信的可能性。新的多铁性材料、器件和电路将使适应性非常强的滤波器成为可能,这反过来又将使监测、预测、适应和与其他网络参与者共存成为可能。该项目不要求所有网络参与者遵守特定的频谱共享协议,而是提出了一个分散的框架,在该框架中,“智能”网络参与者学习其他潜在的传统或被动参与者的预测模型,并使用这些模型来最大限度地提高频谱共享效率。最终的结果是,使用相同数量的无线频谱,更多的网络参与者之间进行更多的通信,具有更强的抗干扰能力和更紧凑的无线设备,如智能手机和无线传感器。该项目使用新型材料和设备技术,在接收器中实现灵活,快速可调的滤波器,从而实现隐式无线环境监测和预测。所收集的信息将被干扰预防技术和传输调度预测算法使用,这些算法使得能够调度未来的传输以最大化频谱共享效率。传统的基于铁磁的RF部件需要DC或可变外部磁场偏置来进行操作和调谐,这使得它们功耗大、体积大并且集成起来不切实际。该项目利用自偏置多铁性异质结构,通过分层薄的,高磁致伸缩的,金属铁磁层和铁电材料层之间的界面交换耦合来增强磁性绝缘体的自偏置,从而实现总电场控制,而不需要任何固定或可变的磁偏置。铁磁谐振器的总电场控制实现了无需DC磁偏置的可调谐、极低延迟、集成紧凑型滤波器。算法将与这些高度可重新配置的滤波器一起开发,以实现不受各种干扰影响的接收器,并且更能够表征其无线环境,并且这些信息将用于学习传输模式的预测模型,从而实现网络参与者之间的有效频谱共享,而无需他们遵守特定的共享协议。该项目将评估传输时间序列预测的传统方法,如长短期记忆,但也将考虑更好地支持快速搜索有效传输时间表的替代方案,包括因果和分布式学习。这些预测将用于优化传输调度和信道使用,以避免干扰并提高有效吞吐量。该项目将在多铁性材料、模拟RF电路设计、网络频谱共享、分散网络协议和用于预测建模的机器学习等领域做出科学和工程贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Mortazawi其他文献
Amir Mortazawi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Mortazawi', 18)}}的其他基金
Technologies for a position independent wireless power transmission system
位置无关无线电力传输系统技术
- 批准号:
1809365 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
SpecEES:Collaborative Research: Power and Spectral Efficiency enabled by RF Co-Designed Electrically-Adaptive Front Ends
SpecEES:协作研究:射频联合设计的电自适应前端实现功率和频谱效率
- 批准号:
1730549 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Intrinsically Switchable Ferroelectric Filter Banks for Frequency Agile and Reconfigurable Radios
用于频率捷变和可重构无线电的本质可切换铁电滤波器组
- 批准号:
1608338 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
High Sensitivity and Wide Dynamic Range IR Sensors Based on Electrostrictive Effect in Thin Film Barium Strontium Titanate.
基于薄膜钛酸锶钡电致伸缩效应的高灵敏度和宽动态范围红外传感器。
- 批准号:
1407580 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
New Approaches for the Design of Integrated phased Arrays
集成相控阵设计的新方法
- 批准号:
1128386 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Novel RF/Microwave Switchable Filters Based on Electrostrictive Resonance in Ferroelectric Thin Films
基于铁电薄膜电致伸缩谐振的新型射频/微波可切换滤波器
- 批准号:
0901464 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Integrated Low Phase Noise Millimeter-Wave Oscillators Based on High-Order Resonance Circuits
基于高阶谐振电路的集成低相位噪声毫米波振荡器
- 批准号:
0725593 - 财政年份:2007
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Novel Circuits for the Design of Low Cost Millimeter Wave Phased Arrays
用于低成本毫米波相控阵设计的新颖电路
- 批准号:
0457543 - 财政年份:2005
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
BST Based Linearizers and Matching Circuits for High Efficiency RF Power Amplifiers
用于高效射频功率放大器的基于 BST 的线性化器和匹配电路
- 批准号:
0300421 - 财政年份:2003
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
RIA: Novel Millimeter-Wave Power Combining Structures
RIA:新型毫米波功率组合结构
- 批准号:
9110155 - 财政年份:1991
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
相似海外基金
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
- 批准号:
2336038 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
CAREER: Securing the Future of Electric Field Measurements in Space Physics
职业:确保空间物理电场测量的未来
- 批准号:
2338825 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
PFI-TT: Water disinfection using safe and sustainable copper combined with a locally enhanced electric field
PFI-TT:使用安全且可持续的铜结合局部增强电场进行水消毒
- 批准号:
2329669 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Heat transfer to/from a droplet passing through a microchannel under an alternating electric field
在交变电场下通过微通道的液滴之间的传热
- 批准号:
23K03708 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电路
- 批准号:
2328464 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Measurement of Electron Drift Velocity in GaN under High Electric Field
高电场下GaN电子漂移速度的测量
- 批准号:
23K13362 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of new forward osmosis process using DC electric field and nanoparticle slurry
利用直流电场和纳米颗粒浆料开发新型正向渗透工艺
- 批准号:
23K17080 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New area electron accelerator with high electric field and high Q by ultra-high frequency photonic assist accelerator
超高频光子辅助加速器高电场高Q值新领域电子加速器
- 批准号:
23H00123 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Tribology and characterization of additives under an electric field
电场下添加剂的摩擦学和表征
- 批准号:
2844636 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Studentship
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for JSPS Fellows