SHINE: Structures in the Solar Corona and Solar Wind and Their Interaction With Turbulence

闪耀:日冕和太阳风的结构及其与湍流的相互作用

基本信息

  • 批准号:
    2229566
  • 负责人:
  • 金额:
    $ 59.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

The solar wind carries particles and magnetic fields throughout the heliosphere and towards the Earth. It is important to understand structures and turbulence in the solar corona, which produces the solar wind, in order to predict and understand space weather. This project addresses the Solar, Heliospheric, and Interplanetary Environment (SHINE) goal of understanding the solar wind, through research that combines remote-sensing observations, in-situ satellite observations, and numerical simulations. The project supports an early-career researcher and broadens the participation of underrepresented groups in STEM and includes public outreach to K-12 students.Understanding the inner heliosphere, especially the Sun-Earth interaction system, requires analysis of the sources of the solar wind in the solar corona, emergent large-scale solar wind structures like corotating interaction regions (CIRs) and the heliospheric current sheet (HCS), and the small-scale solar wind fluctuations or turbulence including the structure called magnetic switchbacks (SBs), treated as an integrated system. The science focus of this project is to study the interaction between large and meso-scale structures and turbulence in the solar wind and understand the solar coronal origins of the structures and turbulence. To this aim, the research will combine numerical simulations with long-term multi-satellite observations and remote-sensing observations to address the following two questions: 1. How do the properties of the corona such as the distribution of coronal holes, streamers, and pseudostreamers lead to different properties of the solar wind observed in-situ? 2. How do solar wind structures like HCS, CIRs, and SBs modify the turbulence properties, such as the power spectrum, Alfvenicity, energy transfer rate etc., during their radial propagation? The 3D magnetohydrodynamic simulations combined with analysis of conjugated in-situ satellite data collected at different locations in the heliosphere will shed light on the physical mechanisms that determine how the turbulence properties are modified by the solar wind structures. The work utilizes a large volume of remote-sensing data to understand how the magnetic and plasma structures on the Sun determines the properties of the structures and turbulence in the solar wind.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳风携带着粒子和磁场穿过日光层,走向地球。为了预测和理解空间天气,了解产生太阳风的日冕中的结构和湍流是重要的。该项目通过结合遥感观测、现场卫星观测和数值模拟的研究,解决太阳、日球层和行星际环境(SINE)理解太阳风的目标。该项目支持一名职业早期研究人员,扩大未被充分代表的群体在STEM中的参与,并包括对K-12学生的公开宣传。了解内部日光层,特别是日地相互作用系统,需要分析太阳日冕中太阳风的来源、新出现的大尺度太阳风结构,如COROTATING相互作用区(CIR)和日球层电流片(HCS),以及小尺度太阳风波动或湍流,包括被称为磁反转(SBS)的结构,将其视为一个综合系统。该项目的科学重点是研究大、中尺度结构与太阳风中的湍流之间的相互作用,并了解这些结构和湍流的日冕起源。为此,本研究将把数值模拟与长期的多星观测和遥感观测相结合,以解决以下两个问题:1.日冕洞、流光和伪流光的分布等日冕特性是如何导致现场观测到的太阳风的不同特性的?2.像HCS、CIRS和SBS这样的太阳风结构在径向传播过程中如何改变湍流特性,如功率谱、Alfvenity和能量传输率等?三维磁流体力学模拟结合对在日光层不同位置收集的共轭原位卫星数据的分析,将揭示确定太阳风结构如何改变湍流性质的物理机制。这项工作利用了大量的遥感数据,以了解太阳上的磁场和等离子体结构如何决定结构的性质和太阳风中的湍流。这一奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Shi其他文献

New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications
适用于高频超声换能器应用的新型 KNN 无铅压电陶瓷
Effects of Low Temperature on Performance of Hydrogen-storage Alloys and Electrolyte
High fructose causes cardiac hypertrophy via mitochondrial signaling pathway
高果糖通过线粒体信号通路导致心脏肥大
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanbo Zhang;Yanhai Meng;Shuo Chang;Rongyuan Zhang;Chen Shi
  • 通讯作者:
    Chen Shi
Simulation of a Porous Medium(PM) Engine Using a Two-Zone Combustion Model
使用两区燃烧模型模拟多孔介质 (PM) 发动机
  • DOI:
    10.4271/2008-01-1516
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Shi
  • 通讯作者:
    Chen Shi
Hardware-Efficient Multi-Format Frequency Offset Estimation for M-QAM Coherent Optical Receivers
M-QAM 相干光接收机的硬件高效多格式频偏估计
  • DOI:
    10.1109/lpt.2018.2863739
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Tao Yang;Chen Shi;Xue Chen;Huan Chen;Xiao Luo;Liqian Wang;Yueying Zhan
  • 通讯作者:
    Yueying Zhan

Chen Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Innovative Geodetic Surveys for Determining Surface and Internal Structures of Solar System Small Bodies
用于确定太阳系小天体表面和内部结构的创新大地测量
  • 批准号:
    23K17710
  • 财政年份:
    2023
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Phase Separation Structures and Bimolecular Recombination in All Polymer Solar Cells
全聚合物太阳能电池中的相分离结构和双分子复合
  • 批准号:
    22K14726
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simplified device structures without charge transport layers for low-cost perovskite solar cells
用于低成本钙钛矿太阳能电池的无电荷传输层的简化器件结构
  • 批准号:
    21K04684
  • 财政年份:
    2021
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Revealing the Atomic and Electronic Structures of the Photoelectrode/Catalyst/Water Interfaces and Their Effects on Solar Water Splitting
CAS:揭示光电极/催化剂/水界面的原子和电子结构及其对太阳能水分解的影响
  • 批准号:
    2054986
  • 财政年份:
    2021
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Continuing Grant
Next Generation Perovskite Solar Cell Structures
下一代钙钛矿太阳能电池结构
  • 批准号:
    EP/T01119X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Fellowship
Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
  • 批准号:
    2011996
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Solar Energy Harvesting, Photothermal-Photovoltaic Dual Modality Building Skins towards Energy Neutral Civil Structures
合作研究:太阳能收集、光热-光伏双模态建筑表皮走向能源中性土木结构
  • 批准号:
    1953004
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
  • 批准号:
    2011603
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Understanding and development of highly efficient water splitting catalysts with core-shell structures for solar-hydrogen production
了解和开发用于太阳能制氢的具有核壳结构的高效水分解催化剂
  • 批准号:
    20K05684
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Solar Energy Harvesting, Photothermal-Photovoltaic Dual Modality Building Skins towards Energy Neutral Civil Structures
合作研究:太阳能收集、光热-光伏双模态建筑表皮走向能源中性土木结构
  • 批准号:
    1953009
  • 财政年份:
    2020
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了