Next Generation Perovskite Solar Cell Structures
下一代钙钛矿太阳能电池结构
基本信息
- 批准号:EP/T01119X/1
- 负责人:
- 金额:$ 40.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the UK government's target to reduce carbon emissions by 80 % by 2050, there is more demand than ever for renewable energy. Solar photovoltaics can directly harness the power of the sun (our most abundant source of renewable energy) by turning light into electricity. Photovoltaics are one of the most attractive sources of renewable energy because they can provide clean electricity on small or large scales with minimal impact on the local environment. The main form of photovoltaic cells used commercially are silicon solar cells.Perovskite solar cells (PSCs) are an exciting new class of solar cell which have the potential to be flexible, thinner, and cheaper than silicon solar cells while achieving a similar efficiency with a lower energy cost of manufacture. I aim to improve the potential of PSCs even further by altering their design to a "back-contact" structure that could increase their performance whilst reducing material costs and making it easier to optimise their operation. A PSC is made from 3 key parts - an absorber for turning light into electricity, and two contacts for extracting the charge. In a normal solar cell these layers are stacked on top of each other like a sandwich, with the absorber in the middle. This means that light has to pass through the top layer of the sandwich in order to reach the absorber, meaning some of it is lost unless the top layer is made from very expensive materials which are both transparent and conductive. A back-contact cell overcomes this by having both contacts on the bottom of the absorber in a honeycomb pattern, or as a set of fingers interwoven with each other. This leaves the top of the absorber free to absorb light with no other layers getting in the way. The back-contact structure has lots of advantages over the standard way of making PSCs, but it has not been studied in detail so far because it is harder to make than the standard structure. The interlocking metal fingers in a back-contact PSC must be thinner than a hundredth of the width of a human hair, whilst covering areas in the order of square meters. Because of this, nobody has been able to do this in a cost effective or scalable way so far. Perovskite lasers are frequently made diffraction gratings, which have very similar structures to the patterns needed in a back-contact solar cell, using a process called nanoimprint lithography. This involves making a stamp in the desired pattern and then physically pressing the features into the material. This is a cheap process which can make patterns quickly over large areas, and in this project I will adapt this technique for perovskite solar cells instead of diffraction gratings. This will enable efficient back-contact PSCs on large areas using a technique that could easily be scaled industrially. Enabling the easy production of back-contact PSCs could help make PSCs with higher efficiency than the sandwich structure, whilst simultaneously reducing their material costs and removing several design constraints. A back-contact cell also enables studies of the physics of the absorber materials which are impossible in the sandwich structure. These experiments will greatly enhance our understanding of how PSCs work, and will speed up research to help find new and improved materials which achieve even higher efficiency. This could help solar power compete with or even become cheaper than fossil fuels, thus paving the way for a new revolution in green energy.
由于英国政府的目标是到2050年将碳排放量减少80%,对可再生能源的需求比以往任何时候都要大。太阳能光伏可以通过将光转化为电能,直接利用太阳(我们最丰富的可再生能源)的能量。光伏是最具吸引力的可再生能源之一,因为它们可以提供小规模或大规模的清洁电力,对当地环境的影响最小。商业上使用的光伏电池的主要形式是硅太阳能电池。钙钛矿太阳能电池(PSCs)是一种令人兴奋的新型太阳能电池,它具有比硅太阳能电池更灵活、更薄、更便宜的潜力,同时以更低的能源成本获得类似的效率。我的目标是通过改变PSC的设计来进一步提高PSC的潜力,这种结构可以提高它们的性能,同时降低材料成本,使其更容易优化运行。PSC由三个关键部件组成--用于将光转化为电能的吸收器,以及用于提取电荷的两个触点。在普通的太阳能电池中,这些层堆叠在一起,就像三明治一样,吸收层在中间。这意味着光必须穿过三明治的顶层才能到达吸收体,也就是说,除非顶层是由非常昂贵的透明和导电材料制成的,否则会损失一些光线。背接触电池克服了这一点,它在吸振器底部具有蜂窝状或相互交织的一组手指的两个接触。这使得吸光器的顶部可以自由吸收光线,而不会有其他层阻碍。背接触结构与制作PSC的标准方法相比有很多优点,但由于它比标准结构更难制造,因此到目前为止还没有被详细研究。背接式PSC中互锁的金属手指必须小于头发宽度的百分之一,同时覆盖面积约为平方米。正因为如此,到目前为止,还没有人能够以经济高效或可扩展的方式做到这一点。钙钛矿型激光器通常采用一种名为纳米压印光刻的工艺制作衍射栅,这种衍射栅的结构与背接触太阳能电池所需的图案非常相似。这包括在所需的图案中制作一个印记,然后将特征物理地压入材料中。这是一个廉价的过程,可以快速在大面积上制作图案,在这个项目中,我将把这种技术应用于钙钛矿型太阳能电池,而不是衍射光栅。这将使用一种易于工业化规模的技术,在大面积上实现高效的背接式PSC。使背接触PSC的生产变得容易,有助于使PSC具有比三明治结构更高的效率,同时降低其材料成本并消除几个设计限制。背接触电池还可以研究在夹层结构中不可能实现的吸波材料的物理。这些实验将极大地提高我们对PSCs工作原理的理解,并将加快研究,以帮助找到新的和改进的材料,从而实现更高的效率。这可能有助于太阳能与化石燃料竞争,甚至变得比化石燃料更便宜,从而为绿色能源的新革命铺平道路。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distinguishing Electron Diffusion and Extraction in Methylammonium Lead Iodide.
- DOI:10.1021/acs.jpclett.3c00082
- 发表时间:2023-03-30
- 期刊:
- 影响因子:5.7
- 作者:Brown, P. E.;Ruseckas, A.;Jagadamma, L. K.;Blaszczyk, O.;Harwell, J. R.;Mica, N.;Zysman-Colman, E.;Samuel, I. D. W.
- 通讯作者:Samuel, I. D. W.
Sensing of explosive vapor by hybrid perovskites: Effect of dimensionality
- DOI:10.1063/5.0011229
- 发表时间:2020-07-01
- 期刊:
- 影响因子:6.1
- 作者:Harwell, J. R.;Glackin, J. M. E.;Samuel, I. D. W.
- 通讯作者:Samuel, I. D. W.
Nanoimprint Lithography as a Route to Nanoscale Back-Contact Perovskite Solar Cells.
- DOI:10.1021/acsanm.3c02493
- 发表时间:2023-08-25
- 期刊:
- 影响因子:5.9
- 作者:Harwell, Jonathon;Samuel, Ifor D. W.
- 通讯作者:Samuel, Ifor D. W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Harwell其他文献
Hybrid delamination of silver contacts from c-Si solar cells: a low environmental impact recycling approach
掺银接触的 c-Si 太阳能电池混合分层:一种低环境影响的回收方法
- DOI:
10.1016/j.resconrec.2025.108429 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:10.900
- 作者:
Bashayer Nafe Alsulami;Jonathon Harwell;Guillaume Zante;Andrew P. Abbott;Andrew Feeney;Jeff Kettle - 通讯作者:
Jeff Kettle
Life cycle assessment (LCA) of circular consumer electronics based on IC recycling and emerging PCB assembly materials
- DOI:
10.1038/s41598-024-79732-1 - 发表时间:
2024-11-25 - 期刊:
- 影响因子:3.900
- 作者:
Tianwei Zhang;Andrew Bainbridge;Jonathon Harwell;Shoushou Zhang;Mahmoud Wagih;Jeff Kettle - 通讯作者:
Jeff Kettle
Jonathon Harwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
- 批准号:
EP/X010422/1 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
- 批准号:
2328010 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Computer modelling of novel perovskite halides for next-generation solar cells
用于下一代太阳能电池的新型钙钛矿卤化物的计算机建模
- 批准号:
2886759 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Studentship
Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
- 批准号:
EP/X011941/1 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant
Towards efficient, next-generation perovskite-based multi-junction cells: The role of interfacial recombination, mobile ions and the built-in potential
迈向高效的下一代基于钙钛矿的多结电池:界面重组、移动离子和内置电势的作用
- 批准号:
498155101 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Heisenberg Grants
NEXt generation of sUstainable perovskite-Silicon tandem cells
下一代可持续钙钛矿硅串联电池
- 批准号:
10054976 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
EU-Funded
NEXt generation of sUstainable perovskite-Silicon tandem cells.
下一代可持续钙钛矿-硅串联电池。
- 批准号:
10055184 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
EU-Funded
Optoelectronic properties and stability of next-generation perovskite materials for solar cells
下一代太阳能电池钙钛矿材料的光电性能和稳定性
- 批准号:
2752067 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Studentship
Electrode Materials For Next-Generation Perovskite Photovoltaics
下一代钙钛矿光伏电极材料
- 批准号:
2741921 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Studentship
Next generation in-situ analysis for perovskite photovoltaic development
钙钛矿光伏开发的下一代原位分析
- 批准号:
EP/V010913/1 - 财政年份:2021
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant














{{item.name}}会员




